×

Error estimates for a stabilized finite element method for the Oldroyd B model. (English) Zbl 1107.76043

Summary: We study a new approximation scheme of transient viscoelastic fluid flow obeying Oldroyd-B-type constitutive equation. The new stabilized formulation bases on the choice of a modified Euler method connected to the streamline upwinding Petrov-Galerkin method [the authors and D. Sandri, Numer. Methods Partial Differ. Equations 21, No. 1, 170–189 (2005; Zbl 1066.65092)], in order to stabilize the tensorial transport term of the Oldroyd derivative. Assuming that the continuous problem admits a sufficiently smooth and sufficiently small solution, we derive a priori error estimates for the approximation in terms of the mesh parameter \(h\) and time discretization parameter \(\Delta t\).

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76A10 Viscoelastic fluids
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Citations:

Zbl 1066.65092
Full Text: DOI

References:

[1] Baranger, J.; Wardi, S., Numerical analysis of a FEM for a transient viscoelastic flow, Comput. Methods Appl. Mech. Engrg., 125, 171-185 (1995) · Zbl 0982.76526
[2] Baranger, J.; Sandri, D., Finite element approximation of viscoelastic fluid flow: Existence of approximate solution and error bound. I. Discontinuous constraints, Numer. Math., 63, 13-27 (1992) · Zbl 0761.76032
[3] Bensaada, M.; Esselaoui, D., Numerical analysis of Euler-SUPG modified method for transient viscoelastic flow, Electron. J. Differential Equations, 41-51 (2004) · Zbl 1077.76036
[4] Bensaada, M.; Esselaoui, D.; Sandri, D., Stabilization method for continuous approximation of transient convection problem, Numer. Methods Partial Differential Equations, 21, 170-189 (2004) · Zbl 1066.65092
[5] Bensaada, M.; Esselaoui, D.; Zine, A., Analyse numérique d’une méthode de type \(θ\)-schéma approximant l’écoulement de fluides viscoélastiques instationnaire, Math-Rech. Appl., 2, 39-58 (2000) · Zbl 1254.76012
[6] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[7] Ervin, V. J.; Miles, W. W., Approximation of time-dependent viscoelastic fluid flow: SUPG approximation, SIAM J. Numer. Anal., 41, 2, 457-486 (2003) · Zbl 1130.76362
[8] Ervin, V. J.; Heuer, N., Approximation of time-dependent viscoelastic fluid flow: Crank-Nicolson, finite element approximation, Numer. Methods Partial Differential Equations, 20, 2, 248-283 (2004) · Zbl 1037.76041
[9] Esselaoui, D.; Ramadane, A.; Zine, A., Decoupled approach for the problem of viscoelastic fluid flow of PTT model I: Continuous stresses, Comput. Methods Appl. Mech. Engrg., 190, 543-560 (2000) · Zbl 0993.76043
[10] Esselaoui, D.; Najib, K.; Ramadane, A.; Zine, A., Analyse numérique et approche découplée d’un problème d’écoulements de fluides non-newtoniens de type Phan-Thien-Tanner: Contraintes discontinues, C. R. Acad. Sci. Paris, 330, 931-936 (2000) · Zbl 0990.76041
[11] Fortin, M.; Fortin, A., A new approach for the FEM simulation of viscoelastic flows, J. Non-Newtonian Fluid Mech., 32, 295-310 (1989) · Zbl 0672.76010
[12] Fortin, M.; Esselaoui, D., A finite element procedure for viscoelastic flows, Internat. J. Numer. Methods Fluids, 7, 1035-1052 (1987) · Zbl 0634.76007
[13] Fortin, M.; Guénette, R.; Pierre, R., On the discrete EVSS method, Comput. Methods Appl. Mech. Engrg., 189, 121-139 (2000) · Zbl 0980.76044
[14] Fortin, M.; Pierre, R., On the convergence of the mixed method for of Crochet and Marchal for viscoelastic flows, Comput. Methods Appl. Mech. Engrg., 73, 341-350 (1989) · Zbl 0692.76002
[15] Girault, V.; Raviart, P. A., Finite Element Method for Navier-Stokes Equations, Theory and Algorithms (1986), Springer: Springer Berlin · Zbl 0396.65070
[16] Guillopé, C.; Saut, J. C., Existence results for the flow of viscoelastic fluids with a differential constitutive law, Nonlinear Anal., 15, 849-869 (1990) · Zbl 0729.76006
[17] Liakos, A.; Lee, H., Two-level finite element discretisation of viscoelastic fluid flow, Comput. Methods Appl. Mech. Engrg., 192, 4965-4979 (2003) · Zbl 1054.76050
[18] Luo, X. L.; Tanner, R. I., A decoupled finite element streamline-upwind scheme for viscoelastic flows problems, J. Non-Newtonian Fluid Mech., 31, 143-162 (1989)
[19] Marchal, J. M.; Crochet, M. J., A new mixed finite element for calculation of viscoelastic flow, J. Non-Newtonian Fluid Mech., 26, 77-114 (1987) · Zbl 0637.76009
[20] Machmoum, A.; Esselaoui, D., Finite element approximation of viscoelastic fluid flow using characteristics method, Comput. Methods Appl. Mech. Engrg., 190, 5603-5618 (2001) · Zbl 1012.76047
[21] Raviart, P. A.; Thomas, J. M., Introduction à l’analyse numérique des E.D.P. (1983), Masson: Masson Paris · Zbl 0561.65069
[22] Sandri, D., Finite element approximation of viscoelastic fluid: Existence of approximate solution and error bound. Continuous approximation of the stress, SIAM J. Numer. Anal., 31, 2, 262-377 (1994) · Zbl 0807.76040
[23] Sandri, D., On a FEM method for linearized version of the Oldroyd’s problem, Comput. Methods Appl. Mech. Engrg., 191, 5045-5065 (2002) · Zbl 1099.76517
[24] Saramito, P., A new \(θ\)-scheme algorithm and incompressible FEM for viscoelastic fluid flow, M2AN, 28, 1, 1-34 (1994) · Zbl 0820.76051
[25] Saramito, P.; Piau, J. M., Flow characteristics of viscoelastic fluids in abrupt contraction by using numerical modeling, J. Non-Newtonian Fluid Mech., 52, 263-288 (1994)
[26] Smith, M. D.; Armstrong, R. C.; Brown, R. A.; Sureshkumar, R., Finite element analysis and stability of two-dimensional viscoelastic flows against three-dimensional perturbation, J. Non-Newtonian Fluid Mech., 93, 203-244 (2000) · Zbl 0990.76047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.