×

Design of attribute EWMA type control charts with reliable run length performance. (English) Zbl 07773958

Summary: Attribute control charts assuming a Poisson (\(n\) chart) or a binomial distribution (\(np\) chart) are usually used when the quality characteristic cannot be measured on a continuous scale. For equivalent sample sizes, Shewhart type attribute control charts are known to be less efficient than their measurement counterparts (like the \(\bar{X}\) chart) and, for this reason, practitioners often compensate it by supplementing them with an EWMA (Exponentially Weighted Moving Average) scheme. However, because of the discrete nature of count data, it is unfortunately impossible to compute exactly and accurately (by means of Markov chain of integral equation methods) the run length (RL) properties, such as its mean (ARL) and its standard deviation (SDRL) of these EWMA attribute control charts and, consequently, it is impossible to efficiently design them in order to minimize some out-of-control characteristics. For this reason, we propose in this paper a dedicated approach called “continuousify” method which, coupled with a classical Markov chain technique, allows to compute the RL properties of any EWMA attribute control chart in a reliable way. A numerical comparison shows that the RL properties obtained by using the proposed “continuousify” approach are very much alike to the ones calculated via simulation and without the “continuousify” approach. Illustrative examples are also provided to show how the proposed method can be implemented in practice.

MSC:

62-XX Statistics

Software:

KernSmooth

References:

[1] A double exponentially weighted moving average control chart for monitoring COM-Poisson attributes, Quality and Reliability Engineering International (2019) · doi:10.1002/qre.2494
[2] Arshad, W.; Abbas, N.; Riaz, M.; Hussain, Z., Simultaneous use of runs rules and auxiliary information with exponentially weighted moving average control charts, Quality and Reliability Engineering International, 33, 2, 323-36 (2017) · doi:10.1002/qre.2007
[3] Aslam, M.; Khan, N.; Jun, C. H., A hybrid exponentially weighted moving average chart for COM-Poisson distribution, Transactions of the Institute of Measurement and Control, 40, 2, 456-61 (2018) · doi:10.1177/0142331216659920
[4] Bilen, C.; Khan, A.; Chattinnawat, W., Dual-monitoring scheme for multivariate autocorrelated cascade processes with EWMA and MEWMA charts, Quality Technology & Quantitative Management, 14, 2, 156-77 (2017) · doi:10.1080/16843703.2016.1208488
[5] Borror, C. M.; Champ, C. W.; Rigdon, S. E., Poisson EWMA control charts, Journal of Quality Technology, 30, 4, 352-61 (1998) · doi:10.1080/00224065.1998.11979871
[6] Brook, D.; Evans, D. A., An approach to the probability distribution of CUSUM run length, Biometrika, 59, 3, 539-49 (1972) · Zbl 0265.62038 · doi:10.1093/biomet/59.3.539
[7] Gan, F. F., Monitoring Poisson observations using modified exponentially weighted moving average control charts, Communications in Statistics - Simulation and Computation, 19, 1, 103-24 (1990) · doi:10.1080/03610919008812847
[8] Gan, F. F., Monitoring observations generated from a binomial distribution using modified exponentially weighted moving average control chart, Journal of Statistical Computation and Simulation, 37, 1-2, 45-60 (1990) · Zbl 0775.62279 · doi:10.1080/00949659008811293
[9] Haridy, S.; Rahim, M. A.; Selim, S. Z.; Wu, Z.; Benneyan, J. C., EWMA chart with curtailment for monitoring fraction nonconforming, Quality Technology & Quantitative Management, 14, 4, 412-28 (2017) · doi:10.1080/16843703.2017.1304040
[10] Khoo, M. B. C.; Castagliola, P.; Liew, J. Y.; Teoh, W. L.; Maravelakis, P. E., A study on EWMA charts with runs rules – the Markov Chain approach, Communications in Statistics - Theory and Methods, 45, 14, 4156-80 (2016) · Zbl 1397.62594 · doi:10.1080/03610926.2014.917187
[11] Latouche, G.; Ramaswami, V., Introduction to matrix analytic methods in stochastic modeling (1999), Philadelphia, PA: ASA-SIAM, Philadelphia, PA · Zbl 0922.60001
[12] Lu, S. L.; Huang, C. J., Statistically constrained economic design of maximum double EWMA control charts based on loss functions, Quality Technology & Quantitative Management, 14, 3, 280-95 (2017) · doi:10.1080/16843703.2016.1208940
[13] Maravelakis, P. E.; Castagliola, P.; Khoo, M. B. C., Run length properties of run rules EWMA chart using integral equations, Quality Technology & Quantitative Management, 16, 2, 129-39 (2019) · doi:10.1080/16843703.2017.1372853
[14] Montgomery, D. C., Introduction to statistical quality control (2013), Hoboken, NJ: John Wiley & Sons, Hoboken, NJ · Zbl 1266.62003
[15] Morais, M. C.; Knoth, S., Improving the ARL profile and the accuracy of its calculation for, Quality and Reliability Engineering International, 36, 3, 876-89 (2020) · doi:10.1002/qre.2606
[16] Neuts, M. F., Matrix-geometric solutions in stochastic models: An algorithmic approach (1981), New York: Dover Publications Inc, New York · Zbl 0469.60002
[17] Perdikis, T.; Psarakis, S.; Castagliola, P.; Maravelakis, P. E., An EWMA signed ranks control chart with reliable run length performances, Quality and Reliability Engineering International, 37, 3, 1266-84 (2021) · doi:10.1002/qre.2795
[18] Raji, I. A.; Abbas, N.; Riaz, M., On designing a robust double exponentially weighted moving average control chart for process monitoring, Transactions of the Institute of Measurement and Control, 40, 15, 4253-65 (2018) · doi:10.1177/0142331217744614
[19] Riaz, M.; Abbasi, S. A., Nonparametric double EWMA control chart for process monitoring, Revista Colombiana de Estadística, 39, 2, 167-84 (2016) · Zbl 1435.62438
[20] Roberts, S. W., Control chart tests based on geometric moving averages, Technometrics, 1, 3, 239-50 (1959) · doi:10.1080/00401706.1959.10489860
[21] Saghir, A.; Lin, Z., A flexible and generalized exponentially weighted moving average control chart for count data, Quality and Reliability Engineering International, 30, 8, 1427-43 (2014) · doi:10.1002/qre.1564
[22] Somerville, S. E.; Montgomery, D. C.; Runger, G. C., Filtering and smoothing methods for mixed particle count distributions, International Journal of Production Research, 40, 13, 2991-3013 (2002) · doi:10.1080/00207540210140040
[23] Szarka, J. L.; Woodall, W. H., A review and perspective on surveillance of Bernoulli processes, Quality and Reliability Engineering International, 27, 6, 735-52 (2011) · doi:10.1002/qre.1256
[24] Tang, A. A.; Castagliola, P.; Sun, J. S.; Hu, X. L., Optimal design of the adaptive EWMA chart for the mean based on median run length and expected median run length, Quality Technology & Quantitative Management, 16, 4, 439-58 (2019) · doi:10.1080/16843703.2018.1460908
[25] Wand, M. P.; Jones, M. C., Kernel smoothing (1994), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 0854.62043
[26] Wu, S.; Castagliola, P.; Celano, G., A distribution-free EWMA control chart for monitoring time-between-events-and-amplitude data, Journal of Applied Statistics, 48, 3, 434-54 (2021) · Zbl 1521.62524 · doi:10.1080/02664763.2020.1729347
[27] Yeh, A. B.; Mcgrath, R. N.; Sembower, M. A.; Shen, Q., EWMA control charts for monitoring high-yield processes based on non-transformed observations, International Journal of Production Research, 46, 20, 5679-99 (2008) · Zbl 1148.62094 · doi:10.1080/00207540601182252
[28] Zhang, L.; Govindaraju, K.; Lai, C. D.; Bebbington, M. S., Poisson DEWMA control chart, Communications in Statistics - Simulation and Computation, 32, 4, 1265-83 (2003) · Zbl 1100.62635 · doi:10.1081/SAC-120023889
[29] Zwetsloot, I. M.; Schoonhoven, M.; Does, R. J. M. M., Robust point location estimators for the EWMA control chart, Quality Technology & Quantitative Management, 13, 1, 29-38 (2016) · doi:10.1080/16843703.2016.1139845
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.