×

A dynamic programming approach for a class of robust optimization problems. (English) Zbl 1397.90368

Summary: Common approaches to solving a robust optimization problem decompose the problem into a master problem (MP) and adversarial problems (APs). The MP contains the original robust constraints, written, however, only for finite numbers of scenarios. Additional scenarios are generated on the fly by solving the APs. We consider in this work the budgeted uncertainty polytope from Bertsimas and Sim, widely used in the literature, and propose new dynamic programming algorithms to solve the APs that are based on the maximum number of deviations allowed and on the size of the deviations. Our algorithms can be applied to robust constraints that occur in various applications such as lot-sizing, the traveling salesman problem with time windows, scheduling problems, and inventory routing problems, among many others. We show how the simple version of the algorithms leads to a fully polynomial time approximation scheme when the deterministic problem is convex. We assess numerically our approach on a lot-sizing problem, showing a comparison with the classical mixed integer linear programming reformulation of the AP.

MSC:

90C31 Sensitivity, stability, parametric optimization
90C39 Dynamic programming

Software:

CPLEX
Full Text: DOI

References:

[1] A. Agra, M. Christiansen, and A. Delgado, {\it Mixed integer formulations for a short sea fuel oil distribution problem}, Transportation Sci., 47 (2013), pp. 108-124.
[2] A. Agra, M. Christiansen, R. M. V. Figueiredo, L. M. Hvattum, M. Poss, and C. Requejo, {\it Layered formulation for the robust vehicle routing problem with time windows}, in Proceedings of Combinatorial Optimization — Second International Symposium, ISCO 2012, Athens, Greece, 2012, pp. 249-260. · Zbl 1370.90019
[3] A. Agra, M. Christiansen, R. M. V. Figueiredo, L. M. Hvattum, M. Poss, and C. Requejo, {\it The robust vehicle routing problem with time windows}, Comput., Oper. Res. 40 (2013), pp. 856-866. · Zbl 1349.90152
[4] A. Agra and C. Requejo, {\it The linking set problem: A polynomial special case of the multiple-choice knapsack problem}, J. Math. Sci., 161 (2009), pp. 919-929. · Zbl 1192.90152
[5] P. Alimonti and V. Kann, {\it Some apx-completeness results for cubic graphs}, Theoret. Comput. Sci., 237 (2000), pp. 123-134. · Zbl 0939.68052
[6] A. Ardestani-Jaafari and E. Delage, {\it Robust optimization of sums of piecewise linear functions with application to inventory problems}, Oper. Res., 64 (2016), pp. 474-494. · Zbl 1342.90222
[7] P. Baptiste, C. Le Pape, and W. Nuijten, eds., {\it Constraint-Based Scheduling: Applying Constraint Programming to Scheduling Problems}, Internat. Ser. Oper. Res. Management Sci. 39, Springer, New York, 2001. · Zbl 1094.90002
[8] A. Ben-Tal, D. den Hertog, and J.-P. Vial, {\it Deriving robust counterparts of nonlinear uncertain inequalities}, Math. Program., 149 (2014), pp. 265-299. · Zbl 1308.65089
[9] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski, {\it Robust Optimization}, Princeton University Press, Princeton, NJ, 2009. · Zbl 1221.90001
[10] A. Ben-Tal, B. Golany, A. Nemirovski, and J.-P. Vial, {\it Retailer-supplier flexible commitments contracts: A robust optimization approach}, Manufacturing Service Oper. Management, 7 (2005), pp. 248-271.
[11] A. Ben-Tal and A. Nemirovski, {\it Robust convex optimization}, Math. Oper. Res., 23 (1998), pp. 769-805. · Zbl 0977.90052
[12] D. Bertsimas, D. Brown, and C. Caramanis, {\it Theory and applications of robust optimization}, SIAM Rev., 53 (2011), pp. 464-501. · Zbl 1233.90259
[13] D. Bertsimas and M. Sim, {\it Robust discrete optimization and network flows}, Math. Program., 98 (2003), pp. 49-71. · Zbl 1082.90067
[14] D. Bertsimas and M. Sim, {\it The price of robustness}, Oper. Res., 52 (2004), pp. 35-53. · Zbl 1165.90565
[15] D. Bienstock and N. Özbay, {\it Computing robust basestock levels}, Discrete Optim., 5 (2008), pp. 389-414. · Zbl 1151.90498
[16] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch, {\it Resource-constrained project scheduling: Notation, classification, models, and methods}, European J. Oper. Res., 112 (1999), pp. 3-41. · Zbl 0937.90030
[17] A. M. Campbell and B. W. Thomas, {\it Probabilistic traveling salesman problem with deadlines}, Transportation Sci., 42 (2008), pp. 1-21.
[18] M. Chardy and O. Klopfenstein, {\it Handling uncertainties in vehicle routing problems through data preprocessing}, in Proceedings of the Third International Conference on Information Systems, Logistics and Supply Chain, 2010.
[20] M. Fischetti and M. Monaci, {\it Cutting plane versus compact formulations for uncertain (integer) linear programs}, Math. Program. Comput., 4 (2012), pp. 239-273. · Zbl 1275.90046
[21] V. Gabrel, C. Murat, and A. Thiele, {\it Recent advances in robust optimization: An overview}, European J. Oper. Res., 235 (2014), pp. 471-483. · Zbl 1305.90390
[22] B. L. Gorissen, A. Ben-Tal, H. Blanc, and D. Den Hertog, {\it A new method for deriving robust and globalized robust solutions of uncertain linear conic optimization problems having general convex uncertainty sets}, Oper. Res., (2014). · Zbl 1302.90142
[23] B. L. Gorissen and D. den Hertog, {\it Robust counterparts of inequalities containing sums of maxima of linear functions}, European J. Oper. Res., 227 (2013), pp. 30-43. · Zbl 1292.90316
[24] M. Grötschel, L. Lovász, and A. Schrijver, {\it Geometric Algorithms and Combinatorial Optimization}, Springer-Verlag, Berlin, 1993. · Zbl 0837.05001
[25] E. Guslitser, {\it Uuncertainty Immunized Solutions in Linear Programming}, M. S. thesis, Technion-Israel Institute of Technology, 2002.
[26] D. A. Iancu, M. Sharma, and M. Sviridenko, {\it Supermodularity and affine policies in dynamic robust optimization}, Oper. Res., 61 (2013), pp. 941-956. · Zbl 1291.90303
[27] O. H. Ibarra and C. E. Kim, {\it Fast approximation algorithms for the knapsack and sum of subset problems}, J. ACM, 22 (1975), pp. 463-468. · Zbl 0345.90049
[28] O. Klopfenstein and D. Nace, {\it A robust approach to the chance-constrained knapsack problem}, Oper. Res. Lett., 36 (2008), pp. 628-632. · Zbl 1210.90126
[29] M. Monaci, U. Pferschy, and P. Serafini, {\it Exact solution of the robust knapsack problem}, Comput, Oper. Res. 40 (2013), pp. 2625-2631. · Zbl 1348.90549
[30] A. A. Pessoa and M. Poss, {\it Robust network design with uncertain outsourcing cost}, INFORMS J. Comput., 27 (2015), pp. 507-524. · Zbl 1328.90023
[31] A. A. Pessoa, L. D. P. Pugliese, F. Guerriero, and M. Poss, {\it Robust constrained shortest path problems under budgeted uncertainty}, Networks, 66 (2015), pp. 98-111. · Zbl 1387.90255
[32] M. Poss, {\it Robust combinatorial optimization with variable budgeted uncertainty}, 4OR, 11 (2013), pp. 75-92. · Zbl 1268.90037
[33] M. Poss, {\it Robust combinatorial optimization with variable cost uncertainty}, European J. Oper. Res., 237 (2014), pp. 836-845. · Zbl 1338.90353
[34] O. Solyali, J.-F. Cordeau, and G. Laporte, {\it Robust inventory routing under demand uncertainty}, Transportation Sci., 46 (2012), pp. 327-340.
[35] Z. M. Teksan and J. Geunes, {\it A polynomial time algorithm for convex cost lot-sizing problems}, Oper. Res. Lett., 43 (2015), pp. 359-364. · Zbl 1408.90021
[36] B. Zeng and L. Zhao, {\it Solving two-stage robust optimization problems by a constraint-and-column generation method}, Oper. Res. Lett., 41 (2013), pp. 457-461. · Zbl 1286.90143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.