×

The quaternionic KP hierarchy and conformally immersed 2-tori in the 4-sphere. (English) Zbl 1237.35141

This work is concerned with the quaternionic KP hierarchy, which is equivalent to the Davey-Stewartson II hierarchy. This article studies its relationship with the theory of conformally immersed tori in the 4-sphere via quaternionic holomorphic geometry. The Sato-Segal-Wilson construction of KP solutions is adapted to this setting and the connection with quaternionic holomorphic curves is made. Then the author compares three different notions of “spectral curve”: the QKP spectral curve; the Floquet multiplier spectral curve for the related Dirac operator; and the curve parameterising Darboux transforms of a conformal 2-torus in the 4-sphere.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
14H70 Relationships between algebraic curves and integrable systems
53A30 Conformal differential geometry (MSC2010)
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)

References:

[1] C. Bohle, Möbius invariant flows of tori in \(S^4\), doctoral thesis, Technische Universität Berlin, 2003.
[2] C. Bohle, Constrained Willmore tori in the 4-sphere., J. Differential Geom. 86 (2010), 71-131. · Zbl 1217.53059
[3] C. Bohle, K. Leschke, F. Pedit and U. Pinkall, Conformal maps from a 2-torus to the 4-sphere, preprint arXiv, 0712.2311 (2007). · Zbl 1261.53057
[4] C. Bohle, F. Pedit and U. Pinkall, Spectral curves of quaternionic holomorphic line bundles over 2-tori, Manuscripta Math. 130 (2009), 311-352. · Zbl 1183.58026 · doi:10.1007/s00229-009-0288-x
[5] F. E. Burstall, D. Ferus, K. Leschke, F. Pedit and U. Pinkall, Conformal geometry of surfaces in \(S^4\) and quaternions, Lecture Notes in Mathematics 1772, Springer, 2002. · Zbl 1033.53001 · doi:10.1007/b82935
[6] F. E. Burstall, F. Pedit and U. Pinkall, Schwarzian derivatives and flows of surfaces, Differential geometry and integrable systems (Tokyo, 2000), 39-61, Contemp. Math., 308, Amer. Math. Soc., Providence, RI, 2002. · Zbl 1031.53026
[7] F. Ehlers and H. Knörrer, An algebro-geometric interpretation of the Bäcklund tranformation for the Kortweg-de Vries equation, Comment. Math. Helv. 57 (1982), 1-10. · Zbl 0516.35071 · doi:10.1007/BF02565842
[8] J. Feldman, H. Knörrer and E. Trubowitz, Riemann surfaces of infinite genus, CRM Monograph Series, 20. AMS, Providence, RI, 2003. · Zbl 1162.14310
[9] D. Ferus, K. Leschke, F. Pedit and U. Pinkall, Quaternionic holomorphic geometry: Plücker formula, Dirac eigenvalue estimates and energy estimates of harmonic tori, Invent. Math. 146 (2001), 507-593. · Zbl 1038.53046 · doi:10.1007/s002220100173
[10] U. Hertrich-Jeromin, I. McIntosh, P. Norman and F. Pedit, Periodic discrete conformal maps, J. Reine Angew. Math. 534 (2001), 129-153. · Zbl 0986.37063 · doi:10.1515/crll.2001.038
[11] K. Leschke and P. Romon, Darboux transforms and spectral curves of Hamiltonian stationary Lagrangian tori, Calc. Var. Partial Differential Equations 38 (2010), 45-74. · Zbl 1203.53049 · doi:10.1007/s00526-009-0278-6
[12] I. McIntosh, Harmonic tori and generalised Jacobi varieties, Comm. Anal. Geom. 9 (2001), 423-449. · Zbl 1002.58013
[13] I. McIntosh, Quaternionic holomorphic curves and the QKP hierarchy, Proceedings of the international workshop on Integrable Systems, Geometry and Visualization, ed. R. Miyaoka (2004) Kyushu University, Fukuoka, Japan.
[14] F. Pedit and U. Pinkall, Quaternionic analysis on Riemann surfaces and differential geometry, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). Doc. Math. 1998, Extra Vol. II, 389-400 (electronic). · Zbl 0910.53042
[15] A. Pressley and G. Segal, Loop groups, Oxford Math. Monographs, Oxford University Press, New York, 1986. · Zbl 0618.22011
[16] M. U. Schmidt, Integrable systems and Riemann surfaces of infinite genus, Mem. Amer. Math. Soc. 122 (1996), no. 581, viii+111 pp. · Zbl 0867.58038
[17] M. U. Schmidt, A proof of the Willmore conjecture, preprint arXiv, math.DG/0203224 (2002).
[18] G. Segal and G. Wilson, Loop groups and equations of KdV type, Inst. Hautes Études Sci. Publ. Math. 61 (1985), 5-65. · Zbl 0592.35112 · doi:10.1007/BF02698802
[19] J.-P. Serre, Algebraic groups and class fields, Grad. Texts in Math. 117, Springer, New York, 1988.
[20] I. A. Taimanov, The Weierstrass representation of closed surfaces in \(R^ 3\), (Russian) Funktsional. Anal. i Prilozhen. 32 (1998), 49-62, 96; translation in Funct. Anal. Appl. 32 (1998), 258-267.
[21] I. A. Taimanov, On two-dimensional finite gap potential Schrödinger and Dirac operators with singular spectral curves, Siberian Math. J. 44 (2003), 686-694.
[22] I. A. Taimanov, Dirac operators and conformal invariants of tori in 3-space, (Russian) Tr. Mat. Inst. Steklova 244 (2004), Din. Sist. i Smezhnye Vopr. Geom., 249-280 (English) Proc. Steklov Inst. Math. 244 (2004), 233-263. · Zbl 1091.53041
[23] I. A. Taimanov, Finite-gap theory of the Clifford torus, Int. Math. Res. Not. (2005), 103-120. · Zbl 1078.53062 · doi:10.1155/IMRN.2005.103
[24] I. A. Taimanov, Surfaces in the four-space and the Davey-Stewartson equations, J. Geom. Phys. 56 (2006), 1235-1256. · Zbl 1103.53031 · doi:10.1016/j.geomphys.2005.06.013
[25] I. A. Taimanov, Two-dimensional Dirac operator and surface theory, Russian Math. Surveys 61 (2006), 79-159. · Zbl 1144.53302 · doi:10.1070/RM2006v061n01ABEH004299
[26] G. Wilson, Commuting flows and conservation laws for Lax equations, Math. Proc. Cambridge Philos. Soc. 86 (1979), 131-143. · Zbl 0427.35024 · doi:10.1017/S0305004100000700
[27] G. Wilson, On two constructions of conservation laws for Lax equations, Quart. J. Math. Oxford Ser.(2) 32 (1981), 491-512. · Zbl 0477.35079 · doi:10.1093/qmath/32.4.491
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.