×

Asymptotically optimal pointwise and minimax quickest change-point detection for dependent data. (English) Zbl 06860591

Summary: We consider the quickest change-point detection problem in pointwise and minimax settings for general dependent data models. Two new classes of sequential detection procedures associated with the maximal “local” probability of a false alarm within a period of some fixed length are introduced. For these classes of detection procedures, we consider two popular risks: the expected positive part of the delay to detection and the conditional delay to detection. Under very general conditions for the observations, we show that the popular Shiryaev-Roberts procedure is asymptotically optimal, as the local probability of false alarm goes to zero, with respect to both these risks pointwise (uniformly for every possible point of change) and in the minimax sense (with respect to maximal over point of change expected detection delays). The conditions are formulated in terms of the rate of convergence in the strong law of large numbers for the log-likelihood ratios between the “change” and “no-change” hypotheses, specifically as a uniform complete convergence of the normalized log-likelihood ratio to a positive and finite number. We also develop tools and a set of sufficient conditions for verification of the uniform complete convergence for a large class of Markov processes. These tools are based on concentration inequalities for functions of Markov processes and the Meyn-Tweedie geometric ergodic theory. Finally, we check these sufficient conditions for a number of challenging examples (time series) frequently arising in applications, such as autoregression, autoregressive GARCH, etc.

MSC:

62Mxx Inference from stochastic processes

References:

[1] Baron M, Tartakovsky AG (2006) Asymptotic Bayesian change-point detection theory for general continuous-time models. Seq Anal 25:257-296 · Zbl 1136.62054 · doi:10.1080/07474940600609597
[2] Basseville M (1988) Detecting changes in signals and systems—A survey. Automatica 24:309-326 · Zbl 0653.93051 · doi:10.1016/0005-1098(88)90073-8
[3] Basseville M (1998) On-board component fault detection and isolation using the statistical local approach. Automatica 34:1391-1416 · Zbl 0945.93608 · doi:10.1016/S0005-1098(98)00086-7
[4] Basseville M, Nikiforov IV (1993) Detection of abrupt changes: theory and applications. Prentice Hall, Englewood Cliffs · Zbl 1407.62012
[5] Benveniste A, Basseville M, Moustakides G (1987) The asymptotic local approach to change detection and model validation. IEEE Trans Autom Control 32:583-592 · Zbl 0628.93071 · doi:10.1109/TAC.1987.1104683
[6] Borkovec M, Klüppelberg C (2001) The tail of the stationary distribution of an autoregressive process with ARCH(1) errors. Ann Appl Probab 11:1220-1241 · Zbl 1010.62083 · doi:10.1214/aoap/1015345401
[7] Brodsky BE, Darkhovsky BS (1993) Nonparametric methods in change-point problems, series on mathematics and its applications. Kluwer Academic Publishers, Dordrecht · Zbl 0779.62031 · doi:10.1007/978-94-015-8163-9
[8] Feigin PD, Tweedie RD (1985) Random coefficient autoregressive processes: a Markov chain analysis of stationarity and finiteness of moments. J Time Ser Anal 6:1-14 · Zbl 0572.62069 · doi:10.1111/j.1467-9892.1985.tb00394.x
[9] Fellouris G and Tartakovsky AG (2015) Multichannel sequential detection—Part I: Non-i.i.d. data. IEEE Trans Inf Theory (submitted) · Zbl 1370.94322
[10] Fuh CD (2003) SPRT and CUSUM in hidden Markov models. Ann Stat 31:942-977 · Zbl 1036.60005 · doi:10.1214/aos/1056562468
[11] Galthouk LI, Pergamenshchikov SM (2013) Uniform concentration inequality for ergodic diffusion processes observed at discrete times. Stoch Process Appl 123:91-109 · Zbl 1266.60139 · doi:10.1016/j.spa.2012.09.004
[12] Galthouk LI, Pergamenshchikov SM (2014) Geometric ergodicity for classes of homogeneous Markov chains. Stoch Process Appl 124:3362-3391 · Zbl 1323.60091 · doi:10.1016/j.spa.2014.05.002
[13] Girshick MA, Rubin H (1952) A Bayes approach to a quality control model. Ann Math Stat 23:114-125 · Zbl 0046.35405 · doi:10.1214/aoms/1177729489
[14] Hawkins DM, Olwell DH (1998) Cumulative sum charts and charting for quality improvement, series in statistics for engineering and physical sciences. Springer, New York · Zbl 0990.62537 · doi:10.1007/978-1-4612-1686-5
[15] Hsu PL, Robbins H (1947) Complete convergence and the law of large numbers. Proc Natl Acad Sci USA 33:25-31 · Zbl 0030.20101 · doi:10.1073/pnas.33.2.25
[16] Kent S (2000) On the trial of intrusions into information systems. IEEE Spectr 37:52-56 · doi:10.1109/6.887597
[17] Klüppelberg C, Pergamenshchikov SM (2004) The tail of the stationary distribution of a random coefficient AR \[(q)\](q) process with applications to an ARCH \[(q)\](q) process. Ann Appl Probab 14:971-1005 · Zbl 1094.62114 · doi:10.1214/105051604000000189
[18] Lai TL (1995) Sequential changepoint detection in quality control and dynamical systems. J R Stat Soc B 57:613-658 · Zbl 0832.62072
[19] Lai TL (1998) Information bounds and quick detection of parameter changes in stochastic systems. IEEE Trans Inf Theory 44:2917-2929 · Zbl 0955.62084 · doi:10.1109/18.737522
[20] Lorden G (1971) Procedures for reacting to a change in distribution. Ann Math Stat 42:1897-1908 · Zbl 0255.62067 · doi:10.1214/aoms/1177693055
[21] Mason RL, Young JC (2001) Multivariate statistical process control with industrial application. SIAM, Philadelphia
[22] Mei Y (2008) Is average run length to false alarm always an informative criterion? Seq Anal 27:354-376 · Zbl 1149.62070 · doi:10.1080/07474940802445790
[23] Meyn S, Tweedie R (1993) Markov chains and stochastic stability. Springer, Berlin · Zbl 0925.60001 · doi:10.1007/978-1-4471-3267-7
[24] Meyn S, Tweedie R (1994) Computable bounds for geometric convergence rates of Markov chains. Ann Appl Probab 4:981-1011 · Zbl 0812.60059 · doi:10.1214/aoap/1177004900
[25] Montgomery DC (2008) Introduction to statistical quality control, 6th edn. Wiley, Hoboken · Zbl 1204.62141
[26] Moustakides GV (1986) Optimal stopping times for detecting changes in distributions. Ann Stat 14:1379-1387 · Zbl 0612.62116 · doi:10.1214/aos/1176350164
[27] Moustakides GV, Polunchenko AS, Tartakovsky AG (2009) Numerical comparison of CUSUM and Shiryaev-Roberts procedures for detecting changes in distributions. Commun Stat Theory Methods 38:3225-3239 · Zbl 1175.62084 · doi:10.1080/03610920902947774
[28] Moustakides GV, Polunchenko AS, Tartakovsky AG (2011) A numerical approach to performance analysis of quickest change-point detection procedures. Stat Sin 21:571-596 · Zbl 1214.62084 · doi:10.5705/ss.2011.026a
[29] Page ES (1954) Continuous inspection schemes. Biometrika 41:100-115 · Zbl 0056.38002 · doi:10.1093/biomet/41.1-2.100
[30] Pollak M (1985) Optimal detection of a change in distribution. Ann Stat 13:206-227 · Zbl 0573.62074 · doi:10.1214/aos/1176346587
[31] Polunchenko AS, Sokolov G, Tartakovsky AG (2014) Optimal design and analysis of the exponentially weighted moving average chart for exponential data. Sri Lankan J Appl Stat 5:57-80 · doi:10.4038/sljastats.v5i4.7784
[32] Pollak M, Tartakovsky AG (2009a) Optimality properties of the Shiryaev-Roberts procedure. Stat Sin 19:1729-1739 · Zbl 1534.62121
[33] Pollak M, Tartakovsky AG (2009b) Asymptotic exponentiality of the distribution of first exit times for a class of Markov processes with applications to quickest change detection. Theory Probab Appl 53:430-442 · Zbl 1201.60073 · doi:10.1137/S0040585X97983742
[34] Polunchenko AS, Tartakovsky AG (2010) On optimality of the Shiryaev-Roberts procedure for detecting a change in distribution. Ann Stat 38:3445-3457 · Zbl 1204.62141 · doi:10.1214/09-AOS775
[35] Shiryaev AN (1961) The problem of the most rapid detection of a disturbance in a stationary process. Dokl Math 2:795-799 · Zbl 0109.11201
[36] Shiryaev AN (1963) On optimum methods in quickest detection problems. Theory Probab Appl 8:22-46 · Zbl 0213.43804 · doi:10.1137/1108002
[37] Shiryaev AN (2006) From stochastic calculus to mathematical finance. Springer, Berlin · Zbl 1124.91035
[38] Srivastava MS, Wu Y (1993) Comparison of EWMA, CUSUM and Shiryayev-Roberts procedures for detecting a shift in the mean. Ann Stat 21:645-670 · Zbl 0816.62068 · doi:10.1214/aos/1176349142
[39] Stoumbos ZG, Reynolds MR Jr, Ryan TP, Woodall WH (2000) The state of statistical process control as we proceed into the 21st century. J Am Stat Assoc 95:992-997 · doi:10.1080/01621459.2000.10474292
[40] Tartakovsky AG (1991) Sequential methods in the theory of information systems. Radio i Svyaz’, Moscow (in Russian) · Zbl 1136.62054
[41] Tartakovsky AG (2005) Asymptotic performance of a multichart CUSUM test under false alarm probability constraint. In: Proceedings of the 44th IEEE conference decision and control and european control conference (CDC-ECC’05), Seville, SP. Omnipress CD-ROM, IEEE, Piscataway, pp 320-325
[42] Tartakovsky AG (2008) Discussion on “Is average run length to false alarm always an informative criterion?” by Yajun Mei. Seq Anal 27:396-405 · Zbl 1247.60060 · doi:10.1080/07474940802446046
[43] Tartakovsky, AG; Adams, N. (ed.); Heard, N. (ed.), Rapid detection of attacks in computer networks by quickest change-point detection methods (2014), London
[44] Tartakovsky AG (2016) On asymptotic optimality in sequential changepoint detection: non-iid case. IEEE Trans Inf Theory (submitted) · Zbl 1369.94378
[45] Tartakovsky AG, Veeravalli VV (2005) General asymptotic Bayesian theory of quickest change detection. Theory Probab Appl 49:458-497 · Zbl 1131.62314 · doi:10.1137/S0040585X97981202
[46] Tartakovsky AG, Rozovskii BL, Blaźek RB, Kim H (2006a) Detection of intrusions in information systems by sequential change-point methods. Stat Methodol 3:252-293 · Zbl 1248.94032 · doi:10.1016/j.stamet.2005.05.003
[47] Tartakovsky AG, Rozovskii BL, Blaźek RB, Kim H (2006b) A novel approach to detection of intrusions in computer networks via adaptive sequential and batch-sequential change-point detection methods. IEEE Trans Signal Process 54:3372-3382 · Zbl 1373.68144 · doi:10.1109/TSP.2006.879308
[48] Tartakovsky AG, Pollak M, Polunchenko AS (2011) Third-order asymptotic optimality of the generalized Shiryaev-Roberts changepoint detection procedures. Theory Probab Appl 56:534-565 · Zbl 1417.62232
[49] Tartakovsky A, Nikiforov I, Basseville M (2014) Sequential analysis: hypothesis testing and changepoint detection. Monographs on statistics and applied probabilityChapman & Hall/CRC Press, Boca Raton · Zbl 1341.62026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.