×

An accurate method for determining the pre-change run length distribution of the generalized Shiryaev-Roberts detection procedure. (English) Zbl 1319.62175

Summary: Change-of-measure is a powerful technique in wide use across statistics, probability, and analysis. Particularly known as Wald’s likelihood ratio identity, the technique enabled the proof of a number of exact and asymptotic optimality results pertaining to the problem of quickest change-point detection. Within the latter problem’s context we apply the technique to develop a numerical method to compute the generalized Shiryaev-Roberts (GSR) detection procedure’s pre-change run length distribution. Specifically, the method is based on the integral equations approach and uses the collocation framework with the basis functions chosen to exploit a certain change-of-measure identity and a specific martingale property of the GSR procedure’s detection statistic. As a result, the method’s accuracy and robustness improve substantially, even though the method’s theoretical rate of convergence is shown to be merely quadratic. A tight upper bound on the method’s error is supplied as well. The method is not restricted to a particular data distribution or to a specific value of the GSR detection statistic’s head start. To conclude, we offer a case study to demonstrate the proposed method at work, drawing particular attention to the method’s accuracy and its robustness with respect to three factors: (1) partition size (rough vs. fine), (2) change magnitude (faint vs. contrast), and (3) average run length (ARL) to false alarm level (low vs. high). Specifically, assuming independent standard Gaussian observations undergoing a surge in the mean, we employ the method to study the GSR procedure’s run length’s pre-change distribution, its average (i.e., the usual ARL to false alarm), and its standard deviation. As expected from the theoretical analysis, the method’s high accuracy and robustness with respect to the foregoing three factors are confirmed experimentally. We also comment on extending the method to handle other performance measures and other procedures.

MSC:

62L10 Sequential statistical analysis
62L15 Optimal stopping in statistics
62P30 Applications of statistics in engineering and industry; control charts
65R20 Numerical methods for integral equations

References:

[1] Arratia , R. and Goldstein , L. ( 2010 ). Size Bias, Sampling, the Waiting Time Paradox, and Infinite Divisibility: When Is the Increment Independent? Unpublished manuscript, arXiv:1007.3910.
[2] Atkinson K., Theoretical Numerical Analysis: A Functional Analysis Framework, (2009) · Zbl 1181.47078
[3] Banach S., Fundamenta Mathematicae 20 pp 133– (1922)
[4] Basseville M., Detection of Abrupt Changes: Theory and Application (1993)
[5] DOI: 10.1093/biomet/59.3.539 · Zbl 0265.62038 · doi:10.1093/biomet/59.3.539
[6] DOI: 10.1080/03610919108812948 · Zbl 0850.62739 · doi:10.1080/03610919108812948
[7] DOI: 10.1007/BF01303967 · Zbl 0081.25104 · doi:10.1007/BF01303967
[8] DOI: 10.1214/aoms/1177729489 · Zbl 0046.35405 · doi:10.1214/aoms/1177729489
[9] Kantorovich L. V., Approximate Methods of Higher Analysis, (1958) · Zbl 0083.35301
[10] Kenett R. S., Modern Industrial Statistics: Design and Control of Quality and Reliability, (1998)
[11] DOI: 10.1007/3-7908-1687-6_5 · doi:10.1007/3-7908-1687-6_5
[12] Kryloff N., Comptes Rendus de l’Académie des Sciences de l’URSS 11 pp 283– (1929)
[13] DOI: 10.1109/18.737522 · Zbl 0955.62084 · doi:10.1109/18.737522
[14] DOI: 10.1081/SQA-200038994 · Zbl 1075.62070 · doi:10.1081/SQA-200038994
[15] DOI: 10.1214/aoms/1177693055 · Zbl 0255.62067 · doi:10.1214/aoms/1177693055
[16] DOI: 10.1080/00401706.1982.10487759 · doi:10.1080/00401706.1982.10487759
[17] DOI: 10.1080/02664760802005878 · Zbl 1154.62421 · doi:10.1080/02664760802005878
[18] DOI: 10.1080/01966324.1991.10737312 · Zbl 0800.62503 · doi:10.1080/01966324.1991.10737312
[19] Montgomery D. C., Introduction to Statistical Quality Control, (2012) · Zbl 0997.62503
[20] DOI: 10.1080/03610920902947774 · Zbl 1175.62084 · doi:10.1080/03610920902947774
[21] DOI: 10.5705/ss.2011.026a · Zbl 1214.62084 · doi:10.5705/ss.2011.026a
[22] DOI: 10.2307/2333009 · doi:10.2307/2333009
[23] DOI: 10.1214/aos/1176346587 · Zbl 0573.62074 · doi:10.1214/aos/1176346587
[24] DOI: 10.1214/aos/1176350373 · Zbl 0632.62080 · doi:10.1214/aos/1176350373
[25] DOI: 10.1214/aos/1176343284 · Zbl 0347.62063 · doi:10.1214/aos/1176343284
[26] DOI: 10.1137/S0040585X97983742 · Zbl 1201.60073 · doi:10.1137/S0040585X97983742
[27] Pollak M., Statistica Sinica 19 pp 1729– (2009)
[28] Polunchenko , A. S. Sokolov , G. , and Du , W. ( 2013 ).Quickest Change-Point Detection: A Bird’s Eye View, inProceedings of 2013 Joint Statistical Meetings, August 3–5, Montréal, Québec, Canada.
[29] DOI: 10.1214/09-AOS775 · Zbl 1204.62141 · doi:10.1214/09-AOS775
[30] DOI: 10.1007/s11009-011-9256-5 · Zbl 06124706 · doi:10.1007/s11009-011-9256-5
[31] Polunchenko A. S., Sequential Analysis 31 pp 409– (2012)
[32] Poor H. V., Quickest Detection (2008) · Zbl 1271.62015 · doi:10.1017/CBO9780511754678
[33] DOI: 10.1080/00401706.1959.10489860 · doi:10.1080/00401706.1959.10489860
[34] DOI: 10.1080/00401706.1966.10490374 · doi:10.1080/00401706.1966.10490374
[35] DOI: 10.1002/9781118058114 · Zbl 1266.62099 · doi:10.1002/9781118058114
[36] Shiryaev A. N., Soviet Mathematics-Doklady 2 pp 795– (1961)
[37] DOI: 10.1137/1108002 · Zbl 0213.43804 · doi:10.1137/1108002
[38] DOI: 10.1007/978-1-4757-1862-1 · doi:10.1007/978-1-4757-1862-1
[39] Tartakovsky , A. G. ( 2005 ). Asymptotic Performance of a Multichart CUSUM Test under False Alarm Probability Constraint, inProceedings of 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC’05), December 12–15, Seville, Spain. · doi:10.1109/CDC.2005.1582175
[40] DOI: 10.1080/07474940802446046 · Zbl 1247.60060 · doi:10.1080/07474940802446046
[41] DOI: 10.1080/07474941003740997 · Zbl 1190.62151 · doi:10.1080/07474941003740997
[42] Tartakovsky , A. G. Pollak , M. , and Polunchenko , A. S. ( 2008 ).Asymptotic Exponentiality of First Exit Times for Recurrent Markov Processes and Applications to Changepoint Detection, inProceedings of 2008 International Workshop on Applied Probability, July 7–10, Compiègne, France.
[43] DOI: 10.1137/S0040585X97985534 · Zbl 1417.62232 · doi:10.1137/S0040585X97985534
[44] Tartakovsky , A. G. Polunchenko , A. S. , and Moustakides , G. V. ( 2009 ).Design and Comparison of Shiryaev–Roberts- and CUSUM-Type Change-Point Detection Procedures, inProceedings of 2nd International Workshop in Sequential Methodologies, June 15–17, University of Technology of Troyes, Troyes, France.
[45] DOI: 10.1109/JSTSP.2012.2233713 · doi:10.1109/JSTSP.2012.2233713
[46] DOI: 10.1016/j.stamet.2005.05.003 · Zbl 1248.94032 · doi:10.1016/j.stamet.2005.05.003
[47] Tartakovsky , A. G. Rozovskii , B. L. , and Shah , K. ( 2005 ).A Nonparametric Multichart CUSUM Test for Rapid Intrusion Detection, inProceedings of 2005 Joint Statistical Meetings, August 7–11, Minneapolis, MN.
[48] Wald A., Sequential Analysis (1947) · Zbl 0029.15805
[49] DOI: 10.1080/00401706.1983.10487883 · doi:10.1080/00401706.1983.10487883
[50] DOI: 10.1137/1.9781611970302 · doi:10.1137/1.9781611970302
[51] DOI: 10.2307/1403593 · doi:10.2307/1403593
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.