×

Partially ordered set of zero-dimensional one-point extensions of a topological space. (English) Zbl 1533.54017

For a zero-dimensional topological space \(X\), let \(\mathcal{E}(X)\) be the poset of one-point extensions of \(X\) and \(\mathcal{E}_0(X)\) the subposet of zero-dimensional one-point extensions of \(X\). The Banaschewski compactification of \(X\) is the largest zero-dimensional compactification of \(X\) and is denoted \(\zeta X\). Among many interesting results on \(\mathcal{E}_0(X)\), the author shows if \(Y \leq Z \leq W\) in \(\mathcal{E}(X)\) and \(Z \in \mathcal{E}_0(X)\), neither \(Y\) nor \(W\) are necessarily in \(\mathcal{E}_0(X)\). Each \(Y \in \mathcal{E}_0(X)\) can be associated with a clopen bornology on \(X\). \(Y \in \mathcal{E}_0(X)\) is the supremum of the elements in \(\mathcal{E}_0(X)\) which are covered by \(Y\). \(\mathcal{E}_0(X)\) has a minimal element if and only if \(X\) is locally compact. \(\mathcal{E}_0(X)\) is a lower semilattice and for any \(Y \in \mathcal{E}_0(X)\), \(\{Z \in \mathcal{E}_0(X) : Y \leq Z\}\) is a complete lower semilattice. For \(Y \in \mathcal{E}_0(X)\), the Banaschewski compactification \(\zeta Y\) is described as a quotient of \(\zeta X\). Connections to locally \(\mathbb{N}\)-compact and locally Lindelöf spaces are also considered.

MSC:

54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)
54D40 Remainders in general topology
06A06 Partial orders, general
06D05 Structure and representation theory of distributive lattices
54D45 Local compactness, \(\sigma\)-compactness
06E05 Structure theory of Boolean algebras
Full Text: DOI

References:

[1] Banaschewski, B., Über nulldimensionale R̈aume. Math. Nachr., 129-140 (1955) · Zbl 0064.41303
[2] Beer, G., On convergence to infinity. Monatshefte Math., 267-280 (2000) · Zbl 0995.54018
[3] Beer, G.; Vipera, M. C., The Alexandroff one-point compactification as a prototype for extensions. Adv. Math., 3-4, 1598-1618 (2012) · Zbl 1259.54008
[4] Caterino, A.; Panduri, F.; Vipera, M. C., Boundedness, one-point extensions and \(B\)-extensions. Math. Slovaca, 1, 101-114 (2008) · Zbl 1164.54018
[5] Čech, E., On bicompact spaces. Ann. Math., 823-844 (1937) · JFM 63.0570.02
[6] Chandler, R. E., Hausdorff Compactifications (1976), Marcel Dekker, Inc.: Marcel Dekker, Inc. New York—Basel · Zbl 0338.54001
[7] Davey, B. A.; Priestley, H. A., Introduction to Lattices and Order (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1002.06001
[8] Eda, K.; Kiyosawa, T.; Ohta, H., \( \mathbb{N} \)-compactness and its applications, 459-521
[9] Engelking, R., General Topology (1989), Heldermann Verlag: Heldermann Verlag Berlin · Zbl 0684.54001
[10] Gillman, L.; Jerison, M., Rings of Continuous Functions (1976), Springer-Verlag: Springer-Verlag New York-Heidelberg · Zbl 0327.46040
[11] Halmos, P.; Givant, S., Introduction to Boolean Algebras. Undergraduate Texts in Mathematics (2009), Springer: Springer New York · Zbl 1168.06001
[12] Isiwata, T., On locally \(Q\)-complete spaces. \(I\), II, and III. Proc. Jpn. Acad., 232-236 (1959), 263-267, 431-434
[13] Koushesh, M. R., On one-point metrizable extensions of locally compact metrizable spaces. Topol. Appl., 3, 698-721 (2007) · Zbl 1117.54037
[14] Koushesh, M. R., On order structure of the set of one-point Tychonoff extensions of locally compact spaces. Topol. Appl., 14, 2607-2634 (2007) · Zbl 1126.54011
[15] Koushesh, M. R., Compactification-like extensions. Diss. Math. (2011), 88 pp · Zbl 1244.54062
[16] Koushesh, M. R., One-point extensions of locally compact paracompact spaces. Bull. Iranian Math. Soc., 4, 199-228 (2011) · Zbl 1276.54017
[17] Koushesh, M. R., The partially ordered set of one-point extensions. Topol. Appl., 3, 509-532 (2011) · Zbl 1216.54007
[18] Koushesh, M. R., One-point extensions and local topological properties. Bull. Aust. Math. Soc., 1, 12-16 (2013) · Zbl 1280.54016
[19] Koushesh, M. R., Topological extensions with compact remainder. J. Math. Soc. Jpn., 1, 1-42 (2015) · Zbl 1312.54015
[20] Mack, J.; Rayburn, M. C.; Woods, R. G., Local topological properties and one-point extensions. Can. J. Math., 338-348 (1972) · Zbl 0242.54019
[21] Mack, J.; Rayburn, M. C.; Woods, R. G., Lattices of topological extensions. Trans. Am. Math. Soc., 163-174 (1974) · Zbl 0313.54026
[22] Mrówka, S., On local topological properties. Bull. Acad. Pol. Sci., Cl. Trois., 951-956 (1957) · Zbl 0079.16405
[23] Olfati, A. R.; Wajch, E., E-compact extensions in the absence of the axiom of choice (2022)
[24] Munkres, J. R., Topology (2000), Prentice Hall: Prentice Hall London · Zbl 0951.54001
[25] Porter, J. R.; Woods, R. G., Extensions and Absolutes of Hausdorff Spaces (1987), Springer-Verlag: Springer-Verlag New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.