×

On \(k\)-generalized \(\psi\)-Hilfer impulsive boundary value problem with retarded and advanced arguments in Banach spaces. (English) Zbl 1529.34008

Summary: This paper deals with the existence and uniqueness results for a class of boundary value problem for implicit nonlinear fractional differential equations with with instantaneous impulses and \(k\)-generalized \(\psi\)-Hilfer fractional derivative involving both retarded and advanced arguments. The result are based on Mönch fixed point theorem associated with the technique of measure of noncompactness. An illustrative example is provided to indicate the applicability of our results.

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations

References:

[1] S. Abbas, M. Benchohra, J. R. Graef, J. Henderson, Implicit Differential and Integral Equa-tions: Existence and Stability, Walter de Gruyter, London, 2018. · Zbl 1390.34002
[2] S. Abbas, M. Benchohra, G. M. N’Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2014.
[3] S. Abbas, M. Benchohra, G. M. N’Guérékata, Topics in Fractional Differential Equations, Springer-Verlag, New York, 2012. · Zbl 1273.35001
[4] J. Appell, Implicit functions, nonlinear integral equations, and the measure of noncompactness of the superposition operator, Journal of Mathematical Analysis and Applications 83, (1981), pp. 251-263. · Zbl 0495.45007
[5] J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980. · Zbl 0441.47056
[6] M. Benchohra, J. E. Lazreg, G. M. N’Guérékata, Nonlinear implicit Hadamardar’s fractional differential equations on Banach space with retarded and advanced arguments, International Journal of Evolution Equations 10, (2015), pp. 283-295. · Zbl 1499.34402
[7] M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive Differential Equations and Inclusions, vol. 2, Hindawi Publishing Corporation, New York, 2006. · Zbl 1130.34003
[8] Y. M. Chu, M. U. Awan, S. Talib, M. A. Noor, K. I. Noor, Generalizations of Hermite-Hadamard like inequalities involving χ κ -Hilfer fractional integrals, Advances in Difference Equations 2020, (2020), Paper No. 594. · Zbl 1486.26039
[9] R. Diaz, C. Teruel, q, k-Generalized gamma and beta functions, Journal of Nonlinear Mathe-matical Physics 12, (2005), pp. 118-134. · Zbl 1075.33010
[10] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. · Zbl 1025.47002
[11] E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and or-dinary differential equations, Advances in Difference Equations 2019, (2019), Paper No. 421. · Zbl 1487.54065
[12] J. P. Kharade, K. D. Kucche, On the impulsive implicit ψ-Hilfer fractional differential equa-tions with delay, Mathematical Methods in the Applied Sciences 43, (2020), pp. 1938-1952. · Zbl 1450.34057
[13] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differen-tial Equations, North-Holland Mathematics Studies, Amsterdam, 2006. · Zbl 1092.45003
[14] K. Liu, J. Wang, D. O’Regan, Ulam-Hyers-Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations, Advances in Difference Equations 2019, (2019), Paper No. 50. · Zbl 1458.34128
[15] H. Mönch, BVP for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Analysis 4, (1980), pp. 985-999. · Zbl 0462.34041
[16] S. Mubeen, G. M. Habibullah, k-Fractional integrals and application, International Journal of Contemporary Mathematical Sciences 7, (2012), pp. 89-94. · Zbl 1248.33005
[17] Salim, Benchohra, Lazreg and Zhou, J. Nonl. Evol. Equ. Appl. 2022 (2023) 105-126 · Zbl 1529.34008
[18] J. E. Nápoles Valdés, Generalized fractional Hilfer integral and derivative, Contributions to Mathematics 2, (2020), pp. 55-60. · Zbl 1538.26018
[19] S. Rashid, M. Aslam Noor, K. Inayat Noor, Y. M. Chu, Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions, AIMS Mathematics 5, (2020), pp. 2629-2645. · Zbl 1484.26038
[20] A. Salim, M. Benchohra, J. R. Graef, J. E. Lazreg, Boundary value problem for fractional gen-eralized Hilfer-type fractional derivative with non-instantaneous impulses, Fractal and Frac-tional 5, no. 1 (2021):1.
[21] A. Salim, M. Benchohra, E. Karapinar, J. E. Lazreg, Existence and Ulam stability for impul-sive generalized Hilfer-type fractional differential equations, Advances in Difference Equa-tions 2020, (2020), Paper No. 601. · Zbl 1486.34037
[22] A. Salim, M. Benchohra, J. E. Lazreg, J. Henderson, Nonlinear implicit generalized Hilfer-type fractional differential equations with non-instantaneous impulses in Banach spaces, Ad-vances in the Theory of Nonlinear Analysis and its Application 4, (2020), pp. 332-348.
[23] A. Salim, M. Benchohra, J. E. Lazreg, G. N’Guérékata, Boundary value problem for nonlinear implicit generalized Hilfer-type fractional differential equations with impulses, Abstract and Applied Analysis 2021, (2021), pp. 1-17. · Zbl 1482.34191
[24] A. Salim, M. Benchohra, J. E. Lazreg, J. J. Nieto, Y. Zhou, Nonlocal initial value problem for hybrid generalized Hilfer-type fractional implicit differential equations, Nonautonomous Dynamical Systems 8, (2021), pp. 87-100. · Zbl 1471.34025
[25] J. V. C. Sousa, E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Communications in Nonlinear Science and Numerical Simulation 60, (2018), pp. 72-91. · Zbl 1470.26015
[26] Y. Zhou, J. R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, Second edition, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. · Zbl 1360.34003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.