×

On implicit \(k\)-generalized \(\psi\)-Hilfer fractional differential coupled systems with periodic conditions. (English) Zbl 1516.34020

Summary: This paper deals with some existence and uniqueness results for a class of nonlinear fractional coupled systems with \(k\)-generalized \(\psi\)-Hilfer fractional differential equations and periodic conditions. The arguments are based on Mawhin’s coincidence degree theory. We demonstrate several results by changing the required conditions of the theorems. Furthermore, illustrative examples are presented to demonstrate the plausibility of our results.

MSC:

34A08 Fractional ordinary differential equations
34A09 Implicit ordinary differential equations, differential-algebraic equations
34B15 Nonlinear boundary value problems for ordinary differential equations
47H11 Degree theory for nonlinear operators
Full Text: DOI

References:

[1] Abbas, S.; Benchohra, M.; Lazreg, JE; Nieto, JJ, On a coupled system of Hilfer and Hilfer-Hadamard fractional differential equations in Banach spaces, J. Nonlinear Funct. Anal., 2018, 12 (2018)
[2] Abbas, S.; Benchohra, M.; N’Guérékata, GM, Topics in Fractional Differential Equations (2012), New York: Springer-Verlag, New York · Zbl 1273.35001 · doi:10.1007/978-1-4614-4036-9
[3] Abbas, S.; Benchohra, M.; N’Guérékata, GM, Advanced Fractional Differential and Integral Equations (2014), New York: Nova Science Publishers, New York
[4] Abdo, MS; Abdeljawad, T.; Kucche, KD, On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative, Adv. Differ. Equ., 2021, 65 (2021) · Zbl 1487.34146 · doi:10.1186/s13662-021-03229-8
[5] Adiguzel, RS; Aksoy, U.; Karapinar, E.; Erhan, IM, On the solution of a boundary value problem associated with a fractional differential equation, Math. Methods Appl. Sci., 43, 1-12 (2020) · Zbl 07924825 · doi:10.1002/mma.6652
[6] Adiguzel, RS; Aksoy, U.; Karapinar, E.; Erhan, IM, On the solutions of fractional differential equations via Geraghty type hybrid contractions, Appl. Comput. Math., 20, 313-333 (2021) · Zbl 1541.34006
[7] Adiguzel, RS; Aksoy, U.; Karapinar, E.; Erhan, IM, Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 115, 3, 16 (2021) · Zbl 1490.34012
[8] Agrawal, OP, Some generalized fractional calculus operators and their applications in integral equations, Fract. Calc. Appl. Anal., 15, 4, 700-711 (2012) · Zbl 1312.26010 · doi:10.2478/s13540-012-0047-7
[9] Almeida, R., A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simulat., 44, 460-481 (2017) · Zbl 1465.26005 · doi:10.1016/j.cnsns.2016.09.006
[10] Almeida, R., Functional differential equations involving the \(\psi \)-Caputo fractional derivative, Fractal Fract., 4, 29, 1-8 (2020)
[11] Almeida, R.; Malinowska, AB; Odzijewicz, T., On systems of fractional differential equations with the \(\psi \)-Caputo derivative and their applications, Math. Methods Appl. Sci., 42, 1-16 (2019)
[12] Afshari, H.; Kalantari, S.; Karapinar, E., Solution of fractional differential equations via coupled fixed point, Electron. J. Differ. Equ., 2015, 1-12 (2015) · Zbl 1328.47081
[13] Afshari, H.; Karapinar, E., A discussion on the existence of positive solutions of the boundary value problems via \(\psi \)-Hilfer fractional derivative on \(b\)-metric spaces, Adv. Differ. Equ., 2020, 1-11 (2020) · Zbl 1486.39007
[14] Balachandran, K.; Kiruthika, S.; Trujillo, JJ, Existence of solutions of nonlinear fractional pantograph equations, Acta. Math. Sci., 33, 3, 712-720 (2013) · Zbl 1299.34009 · doi:10.1016/S0252-9602(13)60032-6
[15] Benchohra, M.; Bouazzaoui, F.; Karapinar, E.; Salim, A., Controllability of second order functional random differential equations with delay, Mathematics, 10, 16 (2022) · doi:10.3390/math10071120
[16] Benchohra, M.; Bouriah, S.; Graef, JR, Nonlinear implicit differential equation of fractional order at resonance, Electron. J. Differ. Equ., 2016, 324, 1-10 (2016) · Zbl 1358.34008
[17] Benkhettou, N.; Aissani, K.; Salim, A.; Benchohra, M.; Tunc, C., Controllability of fractional integro-differential equations with infinite delay and non-instantaneous impulses, Appl. Anal. Optim., 6, 79-94 (2022) · Zbl 1501.34064
[18] Bouriah, S.; Foukrach, D.; Benchohra, M.; Graef, J., Existence and uniqueness of periodic solutions for some nonlinear fractional pantograph differential equations with \(\psi \)-Caputo derivative, Arab. J. Math., 10, 575-587 (2021) · Zbl 1492.34081 · doi:10.1007/s40065-021-00343-z
[19] Bouriah, S.; Salim, A.; Benchohra, M., On nonlinear implicit neutral generalized Hilfer fractional differential equations with terminal conditions and delay, Topol. Algebra Appl., 10, 77-93 (2022) · Zbl 1510.34172 · doi:10.1515/taa-2022-0115
[20] Chu, YM; Awan, MU; Talib, S.; Noor, MA; Noor, KI, Generalizations of Hermite-Hadamard like inequalities involving \(\chi_{{\kappa }}\)-Hilfer fractional integrals, Adv. Differ. Equ., 2020, 594 (2020) · Zbl 1486.26039 · doi:10.1186/s13662-020-03059-0
[21] Derbazi, C.; Baitiche, Z., Coupled systems of \(\psi \)-Caputo differential equations with initial conditions in Banach spaces, Mediter. J. Math., 17, 169 (2020) · Zbl 1453.34005 · doi:10.1007/s00009-020-01603-6
[22] Derbazi, C.; Hammouche, H.; Salim, A.; Benchohra, M., Measure of noncompactness and fractional hybrid differential equations with hybrid conditions, Differ. Equ. Appl., 14, 145-161 (2022) · Zbl 1499.34040 · doi:10.7153/dea-2022-14-09
[23] Diaz, R.; Teruel, C., \({q, k}\)-Generalized gamma and beta functions, J. Nonlinear Math. Phys., 12, 118-134 (2005) · Zbl 1075.33010 · doi:10.2991/jnmp.2005.12.1.10
[24] Gaines, RE; Mawhin, J., Coincidence Degree and Nonlinear Differential Equations (1977), Berlin: Springer-Verlag, Berlin · Zbl 0339.47031 · doi:10.1007/BFb0089537
[25] Heris, A.; Salim, A.; Benchohra, M.; Karapinar, E., Fractional partial random differential equations with infinite delay, Results Phys. (2022) · doi:10.1016/j.rinp.2022.105557
[26] Herrmann, R., Fractional Calculus: An Introduction for Physicists (2011), Singapore: World Scientific Publishing Company, Singapore · Zbl 1232.26006 · doi:10.1142/8072
[27] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/3779
[28] Kilbas, AA; Srivastava, HM; Trujillo, J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[29] Kucche, KD; Mali, AD, On the nonlinear \((k,\psi )\)-Hilfer fractional differential equations, Chaos Solitons Fractals, 2021, 14 (2021) · Zbl 1510.34015
[30] Laledj, N.; Salim, A.; Lazreg, JE; Abbas, S.; Ahmad, B.; Benchohra, M., On implicit fractional \(q\)-difference equations: analysis and stability, Math. Methods Appl. Sci., 45, 1-23 (2022) · Zbl 1534.39004 · doi:10.1002/mma.8417
[31] Mawhin, J., NSFCBMS Regional Conference Series in Mathematics (1979), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0414.34025
[32] Mubeen, S.; Habibullah, GM, \(k\)-fractional integrals and application, Int. J. Contemp. Math. Sci., 7, 89-94 (2012) · Zbl 1248.33005
[33] O’Regan, D.; Chao, YJ; Chen, YQ, Topological Degree Theory and Application (2006), Boca Raton, London, New York: Taylor and Francis Group, Boca Raton, London, New York · Zbl 1095.47001
[34] Rahimkhani, P.; Ordokhani, Y.; Babolian, E., Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet, J. Comput. Appl. Math., 309, 493-510 (2017) · Zbl 1468.65089 · doi:10.1016/j.cam.2016.06.005
[35] Rashid, S.; Aslam Noor, M.; Inayat Noor, K.; Chu, YM, Ostrowski type inequalities in the sense of generalized \({\cal{K} } \)-fractional integral operator for exponentially convex functions, AIMS Math., 5, 2629-2645 (2020) · Zbl 1484.26038 · doi:10.3934/math.2020171
[36] Saeed, U.; Rehman, M., Hermite wavelet method for fractional delay differential equations, J. Differ. Equ., 2014, 8 (2014)
[37] Salim, A.; Abbas, S.; Benchohra, M.; Karapinar, E., A Filippov’s theorem and topological structure of solution sets for fractional q-difference inclusions, Dyn. Syst. Appl., 31, 17-34 (2022) · doi:10.46719/dsa202231.01.02
[38] Salim, A.; Abbas, S.; Benchohra, M.; Karapinar, E., Global stability results for Volterra-Hadamard random partial fractional integral equations, Rend. Circ. Mat. Palermo, 2, 1-13 (2022) · Zbl 1528.45005 · doi:10.1007/s12215-022-00770-7
[39] Salim, A.; Ahmad, B.; Benchohra, M.; Lazreg, JE, Boundary value problem for hybrid generalized Hilfer fractional differential equations, Differ. Equ. Appl., 14, 379-391 (2022) · Zbl 1513.34034 · doi:10.7153/dea-2022-14-27
[40] Salim, A.; Benchohra, M.; Graef, JR; Lazreg, JE, Initial value problem for hybrid \(\psi \)-Hilfer fractional implicit differential equations, J. Fixed Point Theory Appl., 24, 14 (2022) · Zbl 1493.34037 · doi:10.1007/s11784-021-00920-x
[41] Salim, A.; Benchohra, M.; Lazreg, JE; Henderson, J., On \(k\)-generalized \(\psi \)-Hilfer boundary value problems with retardation and anticipation, Adv. Theory Nonlinear Anal. Appl., 6, 173-190 (2022) · doi:10.31197/atnaa.973992
[42] Salim, A.; Benchohra, M.; Lazreg, JE; Karapınar, E., On \(k\)-generalized \(\psi \)-Hilfer impulsive boundary value problem with retarded and advanced arguments, J. Math. Ext., 15, 39 (2021) · Zbl 1498.34216
[43] Salim, A.; Lazreg, JE; Ahmad, B.; Benchohra, M.; Nieto, JJ, A study on \(k\)-generalized \(\psi \)-Hilfer derivative operator, Vietnam J. Math. (2022) · Zbl 1541.34020 · doi:10.1007/s10013-022-00561-8
[44] Samko, SG; Kilbas, AA; Marichev, OI, Fractional Integrals and Derivatives (1993), Gordon and Breach, Yverdon: Theory and Applications, Gordon and Breach, Yverdon · Zbl 0818.26003
[45] Shah, K.; Vivek, D.; Kanagarajan, K., Dynamics and stability of \(\psi \)-fractional Pantograph equations with boundary conditions, Bol. Soc. Parana. Mat., 39, 5, 43-55 (2021) · Zbl 1488.34427 · doi:10.5269/bspm.41154
[46] Sousa, JVC; Capelas de Oliveira, E., A Gronwall inequality and the Cauchy-type problem by means of \(\psi \)-Hilfer operator, Differ. Equ. Appl., 11, 87-106 (2019) · Zbl 1427.34017
[47] Sousa, JVC; Capelas de Oliveira, E., Fractional order pseudo-parabolic partial differential equation: Ulam-Hyers stability, Bull. Braz. Math. Soc., 50, 481-496 (2019) · Zbl 1415.35284 · doi:10.1007/s00574-018-0112-x
[48] Sousa, JVC; Capelas de Oliveira, E., On the \(\psi \)-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60, 72-91 (2018) · Zbl 1470.26015 · doi:10.1016/j.cnsns.2018.01.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.