×

Rational homotopy type and computability. (English) Zbl 1532.55013

Given a simplicial pair \((X, A)\) and a map \(f \colon A \to Y\), the author gives an algorithm for computing the set \([X, Y]^f\) of homotopy classes of extensions of \(f\) to \(X\) under the assumption that \(Y\) is simply connected and a rational H-space through dimension \(d\) for all pairs \((X, A)\) of cohomological dimension at most \(d+1\). The author proves a converse result, as well, showing that, if \(Y\) is not a rational H-space, the extension problem is equivalent to a version of Hilbert’s tenth problem.
The main result builds upon and extends the results of [M. Čadek et al., Discrete Comput. Geom. 57, No. 4, 915–965 (2017; Zbl 1373.55018)]. The author proves that elements of finite order in the rational cohomology of \(Y\) vanish under the finitely many iterations of the multiplication map which allows for the removal of obstruction classes. The main construction is a computable action of the group \([X, H_d]^f\) on \([X, Y_d]^f\) with \(Y_d\) the \(d\)th Postnikov section of \(Y\) and \(H_d = \prod_{n=2}^{d}K(\pi_n(Y), n)\) the H-space approximation to \(Y_d\). The algorithm applies the tools of effective cohomology to compute the set \([X, Y]^f\) via this action [J. Rubio and F. Sergeraert, Bull. Sci. Math. 126, No. 5, 389–412 (2002; Zbl 1007.55019)].
The converse result follows the line of proof for the case \(Y = S^2\) given in [M. Čadek et al., Discrete Comput. Geom. 51, No. 1, 24–66 (2014; Zbl 1358.68297)]. The existence of a higher order Whitehead product in \(\pi_d(Y)\) gives rise to a simplicial pair \((A, X)\) of cohomological degree \(d,\) with \(A\) built from the fat wedge of spheres representing the higher order Whitehead product and \(f \colon A \to Y\) the induced map. The solution to the extension problem in this case is shown to solve a particular integer equation arising from a bilinear form. The solvability of this and related integer equations are discussed and certain cases are proven undecidable by equivalence with versions of Hilbert’s tenth problem.

MSC:

55Q05 Homotopy groups, general; sets of homotopy classes
55-08 Computational methods for problems pertaining to algebraic topology
03D35 Undecidability and degrees of sets of sentences
55P62 Rational homotopy theory

References:

[1] Andrews, P.; Arkowitz, M., Sullivan’s minimal models and higher order Whitehead products, Canadian Journal of Mathematics, 30, 5, 961-982 (1978) · Zbl 0441.55012 · doi:10.4153/CJM-1978-083-6
[2] E. H. Brown, Finite computability of Postnikov complexes, Annals of Mathematics (1957), 1-20. · Zbl 0077.16804
[3] M. Čadek, M. Krčál, J. Matoušek, F. Sergeraert, L. Vokřínek, and U. Wagner, Computing all maps into a sphere, J. ACM 61 (2014), no. 3, Art. 17, 44. · Zbl 1295.68196
[4] Čadek, M.; Krčál, M.; Matoušek, J.; Vokřínek, L.; Wagner, U., Extendability of continuous maps is undecidable, Discrete & Computational Geometry, 51, 1, 24-66 (2014) · Zbl 1358.68297 · doi:10.1007/s00454-013-9551-8
[5] Čadek, M.; Krčál, M.; Matoušek, J.; Vokřínek, L.; Wagner, U., Polynomial-time computation of homotopy groups and Postnikov systems in fixed dimension, SIAM Journal on Computing, 43, 5, 1728-1780 (2014) · Zbl 1320.68099 · doi:10.1137/120899029
[6] Čadek, M.; Krčál, M.; Vokřínek, L., Algorithmic solvability of the lifting-extension problem, Discrete & Computational Geometry, 57, 4, 915-965 (2017) · Zbl 1373.55018 · doi:10.1007/s00454-016-9855-6
[7] Denef, J., Hilbert’s tenth problem for quadratic rings, Proc. Amer. Math. Soc., 48, 214-220 (1975) · Zbl 0324.02032
[8] J. Denef and L. Lipshitz, Diophantine sets over some rings of algebraic integers, J. London Math. Soc. (2) 18 (1978), no. 3, 385-391. · Zbl 0399.10049
[9] Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, vol. 205, Springer (2012). · Zbl 1325.55001
[10] Filakovský, M.; Vokřínek, L., Are two given maps homotopic?, An algorithmic viewpoint, Foundations of Computational Mathematics, 20, 2, 311-330 (2020) · Zbl 1436.55020 · doi:10.1007/s10208-019-09419-x
[11] P. A. Griffiths and J. W. Morgan, Rational homotopy theory and differential forms, Birkhäuser, (1981). · Zbl 0474.55001
[12] Lupton, G.; Smith, SB, Fibrewise rational H-spaces, Algebr. Geom. Topol., 12, 3, 1667-1694 (2012) · Zbl 1248.55004 · doi:10.2140/agt.2012.12.1667
[13] Manin, F.; Weinberger, Sh, Integral and rational mapping classes, Duke Math. J., 169, 10, 1943-1969 (2020) · Zbl 07226653 · doi:10.1215/00127094-2020-0012
[14] Mazur, B.; Rubin, K., Ranks of twists of elliptic curves and Hilbert’s tenth problem, Invent. Math., 181, 3, 541-575 (2010) · Zbl 1227.11075 · doi:10.1007/s00222-010-0252-0
[15] Milnor, J., On axiomatic homology theory, Pacific J. Math., 12, 337-341 (1962) · Zbl 0114.39604 · doi:10.2140/pjm.1962.12.337
[16] Milnor, J., On characteristic classes for spherical fibre spaces, Comment. Math. Helv., 43, 51-77 (1968) · Zbl 0153.53403 · doi:10.1007/BF02564380
[17] Mukherjee, G.; Sankaran, P., Minimal models of oriented Grassmannians and applications, Math. Slovaca, 50, 5, 567-579 (2000) · Zbl 0986.57018
[18] B. Poonen, Using elliptic curves of rank one towards the undecidability of Hilbert’s tenth problem over rings of algebraic integers, Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 33-42. · Zbl 1057.11068
[19] B. Poonen, Hilbert’s tenth problem over rings of number-theoretic interest, notes for a lecture series at the Arizona Winter School on “Number Theory and Logic”, (2003).
[20] Porter, GJ, Higher-order Whitehead products, Topology, 3, 123-135 (1965) · Zbl 0149.20204 · doi:10.1016/0040-9383(65)90039-X
[21] D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295. · Zbl 0191.53702
[22] A. Romero, G. Ellis, and J. Rubio, Interoperating between computer algebra systems: computing homology of groups with Kenzo and GAP, ISSAC 2009—Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation, ACM, New York, (2009), pp. 303-310. MR2742718 · Zbl 1237.68260
[23] Rubio, J.; Sergeraert, F., Constructive algebraic topology, Bull. Sci. Math., 126, 5, 389-412 (2002) · Zbl 1007.55019 · doi:10.1016/S0007-4497(02)01119-3
[24] J. Rubio and F. Sergeraert, Constructive homological algebra and applications, arXiv:1208.3816 [math.KT], 2012.
[25] Sergeraert, F., The computability problem in algebraic topology, Adv. Math., 104, 1, 1-29 (1994) · Zbl 0823.55011 · doi:10.1006/aima.1994.1018
[26] A. Shlapentokh, Hilbert’s tenth problem over number fields, a survey, Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), Contemp. Math., vol. 270, Amer. Math. Soc., Providence, RI, 2000, pp. 107-137. · Zbl 0994.03001
[27] Contemp. Math., vol. 274, Amer. Math. Soc, Providence, RI, 2001, 299-307 (1999)
[28] E. H. Spanier, Algebraic topology, McGraw-Hill, (1966). · Zbl 0145.43303
[29] J. Stasheff, H-spaces from a homotopy point of view, Lecture Notes in Mathematics, Vol. 161, Springer-Verlag, Berlin-New York, 1970. · Zbl 0205.27701
[30] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977), no. 47, 269-331 (1978). · Zbl 0374.57002
[31] D. Sullivan, Geometric topology: localization, periodicity and Galois symmetry, \(K\)-Monographs in Mathematics, vol. 8, Springer, (2005). · Zbl 1078.55001
[32] Vokřínek, L., Decidability of the extension problem for maps into odd-dimensional spheres, Discrete & Computational Geometry, 57, 1, 1-11 (2017) · Zbl 1362.68281 · doi:10.1007/s00454-016-9835-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.