×

Global existence and weak-strong uniqueness for chemotaxis compressible Navier-Stokes equations modeling vascular network formation. (English) Zbl 1534.35296

Summary: A model of vascular network formation is analyzed in a bounded domain, consisting of the compressible Navier-Stokes equations for the density of the endothelial cells and their velocity, coupled to a reaction-diffusion equation for the concentration of the chemoattractant, which triggers the migration of the endothelial cells and the blood vessel formation. The coupling of the equations is realized by the chemotaxis force in the momentum balance equation. The global existence of finite energy weak solutions is shown for adiabatic pressure coefficients \(\gamma > 8/5\). The solutions satisfy a relative energy inequality, which allows for the proof of the weak-strong uniqueness property.

MSC:

35Q30 Navier-Stokes equations
35Q92 PDEs in connection with biology, chemistry and other natural sciences
76N06 Compressible Navier-Stokes equations
76Z05 Physiological flows
92C17 Cell movement (chemotaxis, etc.)
92C35 Physiological flow
35D30 Weak solutions to PDEs
35D35 Strong solutions to PDEs
35K57 Reaction-diffusion equations
35K65 Degenerate parabolic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35R02 PDEs on graphs and networks (ramified or polygonal spaces)

References:

[1] Aïssa, N.; Alexandre, R., Global existence of weak solutions to an angiogenesis model, J. Evol. Eqs., 16, 877-894 (2016) · Zbl 1371.35298
[2] Ambrosi, D.; Gamba, A.; Serini, G., Cell directional and chemotaxis in vascular morphogenesis, Bull. Math. Biol., 66, 1851-1873 (2004) · Zbl 1334.92051
[3] Biler, P.; Brandolese, L., On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis, Studia Math., 193, 241-261 (2009) · Zbl 1167.35316
[4] Di Francesco, M.; Donatelli, D., Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models, Discrete Cont. Dyn. Sys. B, 13, 79-100 (2010) · Zbl 1186.35011
[5] Feireisl, E., Dynamics of Viscous Compressible Fluids (2004), Oxford: Oxford University Press, Oxford · Zbl 1080.76001
[6] Feireisl, E.; Novotný, A., Singular Limits in Thermodynamics of Viscous Fluids (2009), Basel: Birkhäuser, Basel · Zbl 1176.35126
[7] Feireisl, E.; Jin, BJ; Novotný, A., Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., 14, 717-730 (2012) · Zbl 1256.35054
[8] Feireisl, E.; Novotný, A.; Petzeltová, H., On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3, 358-392 (2001) · Zbl 0997.35043
[9] Feireisl, E.; Novotný, A.; Sun, Y., Suitable weak solutions to the Navier-Stokes equations of compressible viscous fluids, Indiana Univ. Math. J., 60, 611-631 (2011) · Zbl 1248.35143
[10] Germain, P., Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13, 137-146 (2011) · Zbl 1270.35342
[11] Huo, X.; Jüngel, A.; Tzavaras, AE, Weak-strong uniqueness for Maxwell-Stefan systems, SIAM J. Math. Anal., 54, 3215-3252 (2022) · Zbl 1498.35008
[12] Jiang, S.; Zhang, P., Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids, J. Math. Pures Appl., 82, 949-973 (2003) · Zbl 1109.35088
[13] Lattanzio, C.; Tzavaras, A., Relative entropy in diffusive relaxation, SIAM J. Math. Anal., 45, 1563-1584 (2013) · Zbl 1277.35246
[14] Mellet, A.; Vasseur, A., On the barotropic compressible Navier-Stokes equations, Commun. Partial Differ. Eqs., 32, 431-452 (2007) · Zbl 1149.35070
[15] Novotný, A.; Pokorný, M., Steady compressible Navier-Stokes-Fourier system for monoatomic gas and its generalizations, J. Differ. Eqs., 251, 270-315 (2011) · Zbl 1273.76354
[16] Novotný, A.; Straškraba, I., Introduction to the Mathematical Theory of Compressible Flow (2004), Oxford: Oxford University Press, Oxford · Zbl 1088.35051
[17] Serini, G.; Ambrosi, D.; Girauso, E.; Gamba, A.; Preziosi, L.; Bussolini, F., Modeling the early stages of vascular network assembly, EMBO J., 22, 1771-1779 (2003)
[18] Sugiyama, Y., Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis, Differ. Integral Eqs., 20, 133-180 (2007) · Zbl 1212.35241
[19] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Eqs., 252, 692-715 (2012) · Zbl 1382.35127
[20] Tosin, A.; Ambrosi, D.; Preziosi, L., Mechanics and chemotaxis in the morphogenesis of vascular networks, Bull. Math. Biol., 68, 1819-1836 (2006) · Zbl 1334.92066
[21] Tuval, I.; Cisneros, L.; Dombrowski, C.; Wolgemuth, C.; Kessler, J.; Goldstein, R., Bacterial swimming and oxygen transport near contact lines, PNAS, 102, 2277-2282 (2005) · Zbl 1277.35332
[22] Winkler, M., Global large-data solutions in a chemotaxis- (Navier)-Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Eqs., 37, 319-351 (2012) · Zbl 1236.35192
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.