×

Dynamic mechanical analysis of pure and fiber-reinforced thermoset- and thermoplastic-based polymers and free volume-based viscoelastic modeling. (English) Zbl 1540.74007

Summary: Fiber-reinforced polymer composites have gained significant importance in engineering applications and are widely used as structural components. The optimal choice of combinations of the type of polymer matrix and the fiber content depend on the required applications. In view of this, polypropylene (PP), a thermoplastic, reinforced with 30 wt.% of short glass fibers (PP-GF30) is considered for this study. Additionally, a rather new composite system based on unsaturated polyester-polyurethane hybrid resin (UPPH) is introduced. This thermoset-based material is reinforced with 41 wt.% of long discontinuous glass fibers (UPPH-GF41). Dynamic mechanical analysis (DMA) is performed on the pure polymer and the composite samples to experimentally characterize the temperature- and frequency-dependent material behavior. It is observed that the stiffness of the materials is highly temperature-dependent. PP exhibits a nonlinear viscoelastic behavior in the temperature range of possible applications whereas the UPPH material shows a less pronounced behavior. The resulting experimental data not only give general information on the material behavior of the composite subjected to a temperature and frequency load but also provide input as well as validation data for the developed material modeling methods. In an industrial environment, homogenized elastic material properties are desirable for analysis of the structural components at room temperature conditions. A mean field homogenization method is introduced to estimate the effective elastic material properties on a macroscopic scale. This method is formulated explicitly in terms of orientation tensors of second- and fourth-order, describing quantitatively the microstructure of the corresponding composite. Additionally, the thermoviscoelastic material behavior for the considered temperature range is modeled by the free volume concept. In this context, the material parameters for the pure PP and UPPH material are identified. The calculated simulation results are compared with the experimental data entailing good agreements.
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

MSC:

74A40 Random materials and composite materials
74E30 Composite and mixture properties
74A60 Micromechanical theories
74E05 Inhomogeneity in solid mechanics
Full Text: DOI

References:

[1] F.Henning, H.Ernst, R.Brüssel, Reinf. Plast.2005, 49, 24.
[2] K.Brast, Verarbeitung von langfaserverstärkten Thermoplasten im direkten Plastifizier‐/Pressverfahren, Ph.D. thesis, Bibliothek der RWTH Aachen, 2001.
[3] J.Karger‐Kocsis, Polypropylene: An A‐Z reference, Springer Science & Business Media, Dordrecht, The Netherlands2012.
[4] J.Thomason, Compos. Part A Appl. Sci. Manuf.2002, 33, 1641.
[5] J.Thomason, Compos. Part A Appl. Sci. Manuf.2005, 36, 995.
[6] S.C. Tjong, S.A. Xu, R.K. Y. Li, Y.W. Mai, Compos. Sci. Technol2002, 62, 831.
[7] P.Kostka, K.Holeczek, A.Filippatos, A.Langkamp, W.Hufenbach, J. Intell. Mater. Syst. Struct.2013, 24, 299.
[8] P.Kostka, K.Holeczek, R.Höhne, A.Filippatos, N.Modler, Polym. Test.2016, 52, 184.
[9] J.Thomason, Polym. Compos.1990, 11, 105.
[10] B.Brylka, T.Böhlke, F.Henning, J.Wood, DGM‐Tagungsband2013, 19, 634.
[11] B.Brylka, M.Schemmann, J.Wood, T.Böhlke, Polym. Test.2017, 66, 296.
[12] H.F. Brinson, L.C. Brinson, Polymer Engineering Science and Viscoelasticity: An Introduction, 2nd edition, Springer, New York2015.
[13] M.L. Williams, R.F. Landel, J.D. Ferry, J. Am. Chem. Soc1955, 77, 3701.
[14] J.R. Willis, Adv. Appl. Mech1981, 21, 1. · Zbl 0476.73053
[15] T.Mura, Micromechanics of Defects in Solids, Springer, Dordrecht, The Netherlands1987. · Zbl 0652.73010
[16] S.Torquato, Random Heterogeneous Materials: microstructure and macroscopic properties, Springer‐Verlag, New York2002. · Zbl 0988.74001
[17] C.L. Tucker III, E.Liang, Compos. Sci. Technol1999, 59, 655.
[18] V.Müller, B.Brylka, F.Dillenberger, R.Glöckner, S.Kolling, T.Böhlke, J. Compos. Mater.2016, 50, 297.
[19] B.Brylka, Charakterisierung und Modellierung der Steifigkeit von langfaserverstärktem Polypropylen, Ph.D. Thesis, KIT Scientific Publishing, 2017.
[20] H.Wang, H.Zhou, L.Mishnaevsky, P.Brondsted, L.Wang, Comput. Mater. Sci.2009, 46, 810.
[21] H.Moulinec, P.Suquet, C.R. Acad. Sci., Ser. IIb: Mec., Phys., Chim., Astron.1994, 318, 1417.
[22] H.Moulinec, P.Suquet, Comput. Methods Appl. Mech. Eng.1998, 157, 69. · Zbl 0954.74079
[23] H.Andrä, R.Grzhibovskis, S.Rjasanow, in Advanced Finite Element Methods and Applications. 2013, (Eds: T.Apel (ed.), O.Steinbach (ed.)), Springer, Berlin, Germany. · Zbl 1252.65002
[24] S.Fliegener, Micromechanical finite element modeling of long fiber reinforced thermoplastics, Ph.D. Thesis, Karlsruher Institut für Technologie (KIT), 2015.
[25] M.Schneider, Comput. Methods Appl. Mech. Eng.2017, 315, 846. · Zbl 1439.74505
[26] GABO, Bedienungsanleitung für die EPLEXOR, GABO Qualimeter (Ed:8), 2010.
[27] K.P. Menard, Dynamic Mechanical Analysis: A Practical Introduction, CRC Press, Boca Raton, FL2008.
[28] V.Müller, Micromechanical modeling of short‐fiber reinforced composites, Ph.D. Thesis, KIT Scientific Publishing, 2016.
[29] D.Bücheler, A.Kaiser, F.Henning, Compos. Part B Eng.2016, 106, 218.
[30] M.Schöneich, Charakterisierung und Modellierung viskoelastischer Eigenschaften von kurzglasfaserverstärkten Thermoplasten mit Faser‐Matrix Interphase, Ph.D. Thesis, Université de Lorraine, 2016.
[31] C.G. Mothé, D.F. J. Monteiro, M.G. Mothé, Mater. Sci. Appl.2016, 7, 349.
[32] P.P. Castañeda, J. Mech. Phys. Solids1991, 39, 45. · Zbl 0734.73052
[33] P.Kanouté, D.Boso, J.Chaboche, B.Schrefler, Arch. Comput. Methods Eng.2009, 16, 31. · Zbl 1170.74304
[34] R.Hill, J. Mech. Phys. Solids1963, 11, 357. · Zbl 0114.15804
[35] L.Walpole, J. Mech. Phys. Solids1969, 17, 235. · Zbl 0177.53204
[36] J.Willis, Variational estimates for the overall response of an inhomogeneous nonlinear dielectric, Springer, New York1986, pp. 247-263. · Zbl 0649.73013
[37] Y.Benveniste, Mech. Mater.1987, 6, 147.
[38] T.Böhlke, C.Brüggemann, Tech. Mech.2001, 21, 145.
[39] CESGranta Design, Edupack materials selector, 2016.
[40] A.K. Doolittle, J. Appl. Phys.1951, 22, 1471.
[41] M.H. Cohen, D.Turnbull, J. Chem. Phys.1959, 31, 1164.
[42] J.D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York1980.
[43] R.P. White, J.E. G. Lipson, Macromolecules2016, 49, 3987.
[44] G.Dlubek, V.Bondarenko, I.Y. Al‐Qaradawi, D.Kilburn, R.Krause‐Rehberg, Chem. Phys.2004, 205, 512.
[45] D.Cangialosi, H.Schut, A.Van Veen, S.J. Picken, Macromolecules2003, 36, 142.
[46] G.Dlubek, J.Pionteck, D.Kilburn, Macromol. Chem. Phys.2004, 205, 500.
[47] A.Krawietz, Materialtheorie, Springer, Berlin, Germany1986.
[48] A.Lion, C.Mittermeier, M.Johlitz, Continuum Mech. Thermodyn.2017, 29, 1061. · Zbl 1392.74072
[49] G.Lebon, D.Jou, J.Casas‐Vázquez, Understanding Non‐Equilibrium Thermodynamics, Springer, Berlin, Germany2008. · Zbl 1163.80001
[50] B.D. Coleman, W.Noll, Arch. Ration. Mech. Anal.1963, 13, 167. · Zbl 0113.17802
[51] I.Müller, Grundzüge der Thermodynamik, Springer, Berlin, Germany2001.
[52] K.Ngai, D.Plazek, Rubber Chem. Technol.1995, 68, 376.
[53] N.W. Tschoegl, W.G. Knauss, I.Emri, Mech. Time‐Depend. Mater.2002, 6, 53.
[54] R.W. Fillers, N.W. Tschoegl, J. Rheol.1977, 21, 51.
[55] D.Cangialosi, J. Phys. Condens. Matter2014, 26, 153101.
[56] P.A. O’Connell, G.B. McKenna, J. Chem. Phys1999, 110, 11054.
[57] I.M. Hodge, J. Non‐Cryst. Solids1994, 169, 211.
[58] T.D. Nguyen, H.Jerry Qi, F.Castro, K.N. Long, J. Mech. Phys. Solids2008, 56, 2792. · Zbl 1171.74327
[59] G.Liu, D.Zhao, Y.Zuo, J. Non‐Cryst. Solids2015, 417-418, 52.
[60] G.Adam, J.H. Gibbs, J. Chem. Phys1965, 43, 139.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.