×

Complete moment convergence of weighted sums for processes under asymptotically almost negatively associated assumptions. (English) Zbl 1318.60033

In this paper, weighted sums of asymptotically almost negatively associated (AANA) random variables are considered. By using Rosenthal type moment inequalities, the complete moment convergence of these weighted sums is studied. The main results of this paper extend the corresponding ones by Y. S. Chow [Bull. Inst. Math., Acad. Sin. 16, No. 3, 177–201 (1988; Zbl 0655.60028)].

MSC:

60F15 Strong limit theorems
60F99 Limit theorems in probability theory

Citations:

Zbl 0655.60028
Full Text: DOI

References:

[1] An J, Complete convergence of weighted sums for sequences of AANA radom variables (submitted)
[2] Cai G H, Complete convergence for weighted sums of sequences of AANA random variables, Glasgow Math. J. 17(1) (2004) 165–181
[3] Chen P Y and Wang D C, Complete moment convergence for sequence of identically distributed {\(\phi\)}-mixing random variables, Acta Math. Sin. Engl. Ser. 26(4) (2010) 679–690 · Zbl 1205.60062 · doi:10.1007/s10114-010-7625-6
[4] Chow Y S, On the rate of moment complete convergence of sample sums and extremes, Bull. Inst. Math. Acad. Sin. 16 (1988) 177–201 · Zbl 0655.60028
[5] Chow Y S and Teicher H, Probability theory: independent, interchangeability, Martingales, third edition) (1997) (New York: Springer) · Zbl 0891.60002
[6] Chandra T K and Ghosal S, Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables, Acta Math. Hung. 71(4) (1996a) 327–336 · Zbl 0853.60032 · doi:10.1007/BF00114421
[7] Chandra T K and Ghosal S, The strong law of large numbers for weighted averages under dependence assumptions, J. Theor. Probab. 9(3) (1996b) 797–809 · Zbl 0857.60021 · doi:10.1007/BF02214087
[8] Ghosal S and Chandra T K, Complete convergence of martingale arrays, J. Theor. Probab. 11 (1998) 621–631 · Zbl 0913.60029 · doi:10.1023/A:1022646429754
[9] Gut A, Probability theory: a graduate course (2005) (New York: Springer)
[10] Kim T S, Ko M H and Lee I H, On the strong laws for asymptotically almost negatively associated random variables, Rocky Mt. J. Math. 34(3) (2004) 979–989 · Zbl 1109.60315 · doi:10.1216/rmjm/1181069838
[11] Li Y X and Zhang L X, Complete moment convergence of moving average under dependent assumptions, Stat. Probab. Lett. 70 (2004) 191–197 · Zbl 1056.62100 · doi:10.1016/j.spl.2004.08.011
[12] Li D L, Rao B, Jiang T F and Wang X C, Complete convergence and almost sure convergence of weighted sums of random variables, J. Theor. Probab. 8 (1995) 49–76 · Zbl 0814.60026 · doi:10.1007/BF02213454
[13] Petrov V V, Limit theorems of probability: sequences of independent random variables (1995) (Oxford: Clarendon Press) · Zbl 0826.60001
[14] Wang X J, Hu S H and Yang W Z, Complete convergence for arrays of rowwise asymptotically almost negatively associated random variables, Discret. Dyn. Nat. Soc., Article ID 717126 (2011) 11 page. doi: 10.1155/2012/717126 · Zbl 1235.60026
[15] Yang W Z, Wang X J, Ling N X and Hu S H, On complete convergence of moving average process for AANA sequence, Discret. Dyn. Nat. Soc., Article ID 86391 (2012) 24 pages. doi: 10.1155/2012/863931 · Zbl 1247.60043
[16] Yuan D M and An J, Rosenthal type inqualities for asymptotically almost negatively associated random variables and applications, Sci. China Ser. A 52(9) (2009) 1887–1904 · Zbl 1184.62099 · doi:10.1007/s11425-009-0154-z
[17] Zhou X C and Lin J G, Complete q-moment convergence of moving average process under {\(\phi\)}-mixing assumption, J. Math. Res. Expo. 31(4) (2011) 687–697 · Zbl 1249.60058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.