×

Causal information approach to partial conditioning in multivariate data sets. (English) Zbl 1244.62126

Summary: When evaluating causal influence from one time series to another in a multivariate data set it is necessary to take into account the conditioning effect of the other variables. In the presence of many variables and possibly of a reduced number of samples, full conditioning can lead to computational and numerical problems. We address the problem of partial conditioning to a limited subset of variables, in the framework of information theory. The proposed approach is tested on simulated data sets and on an example of intracranial EEG recording from an epileptic subject. We show that, in many instances, conditioning on a small number of variables, chosen as the most informative ones for the driver node, leads to results very close to those obtained with a fully multivariate analysis and even better in the presence of a small number of samples. This is particularly relevant when the pattern of causalities is sparse.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62B10 Statistical aspects of information-theoretic topics
92C55 Biomedical imaging and signal processing
92C20 Neural biology
65C60 Computational problems in statistics (MSC2010)

References:

[1] A. Barabasi, Linked, Perseus, 2002.
[2] S. Boccaletti, D. U. Hwang, M. Chavez, A. Amann, J. Kurths, and L. M. Pecora, “Synchronization in dynamical networks: evolution along commutative graphs,” Physical Review E, vol. 74, no. 1, Article ID 016102, 5 pages, 2006. · doi:10.1103/PhysRevE.74.016102
[3] Z. Gharhamani, “Learning dynamic bayesian networks,” Lecture Notes in Computer Science, vol. 1387, pp. 168-197, 1997.
[4] D. Yu, M. Righero, and L. Kocarev, “Estimating topology of networks,” Physical Review Letters, vol. 97, no. 18, Article ID 188701, 4 pages, 2006. · doi:10.1103/PhysRevLett.97.188701
[5] K. Hlavá-Schindler, M. Palu\vs, M. Vejmelka, and J. Bhattacharya, “Causality detection based on information-theoretic approaches in time series analysis,” Physics Reports, vol. 441, no. 1, pp. 1-46, 2007. · doi:10.1016/j.physrep.2006.12.004
[6] S. L. Bressler and A. K. Seth, “Wiener-Granger causality: a well established methodology,” NeuroImage, vol. 58, no. 2, pp. 323-329, 2011.
[7] M. Kamiński, M. Ding, W. A. Truccolo, and S. L. Bressler, “Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance,” Biological Cybernetics, vol. 85, no. 2, pp. 145-157, 2001. · Zbl 1160.92314 · doi:10.1007/s004220000235
[8] K. J. Blinowska, R. Kuś, and M. Kamiński, “Granger causality and information flow in multivariate processes,” Physical Review E, vol. 70, no. 5, Article ID 050902, 4 pages, 2004. · doi:10.1103/PhysRevE.70.050902
[9] A. Seth, “Causal connectivity of evolved neural networks during behavior,” Network, vol. 16, no. 1, pp. 35-54, 2005. · doi:10.1080/09548980500238756
[10] A. Roebroeck, E. Formisano, and R. Goebel, “Mapping directed influence over the brain using Granger causality and fMRI,” NeuroImage, vol. 25, no. 1, pp. 230-242, 2005. · doi:10.1016/j.neuroimage.2004.11.017
[11] R. Ganapathy, G. Rangarajan, and A. K. Sood, “Granger causality and cross recurrence plots in rheochaos,” Physical Review E, vol. 75, no. 1, Article ID 016211, 6 pages, 2007. · doi:10.1103/PhysRevE.75.016211
[12] L. Faes, G. Nollo, and K. H. Chon, “Assessment of granger causality by nonlinear model identification: application to short-term cardiovascular variability,” Annals of Biomedical Engineering, vol. 36, no. 3, pp. 381-395, 2008. · doi:10.1007/s10439-008-9441-z
[13] C. W. J. Granger, “Investigating causal relations by econometric models and cross-spectral methods,” Econometrica, vol. 37, no. 3, pp. 424-438, 1969. · Zbl 1366.91115
[14] N. Wiener, The Theory of Prediction, vol. 1, McGraw-Hill, New York, NY, USA, 1996.
[15] J. F. Geweke, “Measures of conditional linear dependence and feedback between time series,” Journal of the American Statistical Association, vol. 79, no. 388, pp. 907-915, 1984. · Zbl 0553.62083 · doi:10.2307/2288723
[16] A. B. Barrett, L. Barnett, and A. K. Seth, “Multivariate Granger causality and generalized variance,” Physical Review E, vol. 81, no. 4, Article ID 041907, 14 pages, 2010. · doi:10.1103/PhysRevE.81.041907
[17] Y. Chen, S. L. Bressler, and M. Ding, “Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data,” Journal of Neuroscience Methods, vol. 150, no. 2, pp. 228-237, 2006. · doi:10.1016/j.jneumeth.2005.06.011
[18] G. Deshpande, S. LaConte, G. A. James, S. Peltier, and X. Hu, “Multivariate granger causality analysis of fMRI data,” Human Brain Mapping, vol. 30, no. 4, pp. 1361-1373, 2009. · doi:10.1002/hbm.20606
[19] Z. Zhou, Y. Chen, M. Ding, P. Wright, Z. Lu, and Y. Liu, “Analyzing brain networks with PCA and conditional granger causality,” Human Brain Mapping, vol. 30, no. 7, pp. 2197-2206, 2009. · doi:10.1002/hbm.20661
[20] L. Angelini, M. de Tommaso, D. Marinazzo, L. Nitti, M. Pellicoro, and S. Stramaglia, “Redundant variables and granger causality,” Physical Review E, vol. 3, Article ID 037201, 4 pages, 81. · doi:10.1103/PhysRevE.81.037201
[21] D. Marinazzo, W. Liao, M. Pellicoro, and S. Stramaglia, “Grouping time series by pairwise measures of redundancy,” Physics Letters, Section A, vol. 374, no. 39, pp. 4040-4044, 2010. · Zbl 1238.92028 · doi:10.1016/j.physleta.2010.08.011
[22] T. Schreiber, “Measuring information transfer,” Physical Review Letters, vol. 85, no. 2, pp. 461-464, 2000. · doi:10.1103/PhysRevLett.85.461
[23] A. Papoulis, Proability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, NY, USA, 1985. · Zbl 0626.62096
[24] D. Marinazzo, M. Pellicoro, and S. Stramaglia, “Kernel method for nonlinear Granger causality,” Physical Review Letters, vol. 100, no. 14, Article ID 144103, 4 pages, 2008. · doi:10.1103/PhysRevLett.100.144103
[25] L. Barnett, A. B. Barrett, and A. K. Seth, “Granger causality and transfer entropy Are equivalent for gaussian variables,” Physical Review Letters, vol. 103, no. 23, Article ID 238701, 4 pages, 2009. · doi:10.1103/PhysRevLett.103.238701
[26] D. Marinazzo, M. Pellicoro, and S. Stramaglia, “Kernel-Granger causality and the analysis of dynamical networks,” Physical Review E, vol. 77, no. 5, Article ID 056215, 9 pages, 2008. · doi:10.1103/PhysRevE.77.056215
[27] W. Zachary, “An information flow model for conflict and fission in small groups,” Journal of Anthropological Research, vol. 33, no. 2, pp. 452-473, 1977.
[28] M. A. Kramer, E. D. Kolaczyk, and H. E. Kirsch, “Emergent network topology at seizure onset in humans,” Epilepsy Research, vol. 79, no. 2-3, pp. 173-186, 2008. · doi:10.1016/j.eplepsyres.2008.02.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.