×

A novel method in determining a layered periodic structure. (English) Zbl 1487.35442

Summary: This paper is concerned with the inverse scattering of time-harmonic waves by a penetrable structure. By applying the integral equation method, we establish the uniform \(L^p_{\alpha}\) (\(1< p\leq 2\)) estimates for the scattered and transmitted wave fields corresponding to a series of incident point sources. Based on these a priori estimates and a mixed reciprocity relation, we prove that the penetrable structure can be uniquely identified by means of the scattered field measured only above the structure induced by a countably infinite number of quasi-periodic incident plane waves.

MSC:

35R30 Inverse problems for PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J25 Boundary value problems for second-order elliptic equations
35P25 Scattering theory for PDEs
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
78A45 Diffraction, scattering

References:

[1] Adams, A.; Fournier, J. F., Sobolev Spaces (2003), Singapore: Elsevier, Singapore · Zbl 1098.46001
[2] Ammari, H., Uniqueness theorems for an inverse problem in a doubly periodic structure, Inverse Probl., 11, 823-833 (1995) · Zbl 0841.35123 · doi:10.1088/0266-5611/11/4/013
[3] Arens, T.; Grinberg, N., A complete factorization method for scattering by periodic surfaces, Computing, 75, 111-132 (2005) · Zbl 1075.35103 · doi:10.1007/s00607-004-0092-0
[4] Arens, T.; Kirsch, A., The factorization method in inverse scattering from periodic structures, Inverse Probl., 19, 1195-1211 (2003) · Zbl 1330.35519 · doi:10.1088/0266-5611/19/5/311
[5] Bao, G., A uniqueness theorem for an inverse problem in periodic diffractive optics, Inverse Probl., 10, 335-340 (1994) · Zbl 0805.35144 · doi:10.1088/0266-5611/10/2/009
[6] Bao, G.; Zhang, H.; Zou, J., Unique determination of periodic polyhedral structures by scattered electromagnetic fields, Trans. Am. Math. Soc., 363, 4527-4551 (2011) · Zbl 1222.35207 · doi:10.1090/S0002-9947-2011-05334-1
[7] Bao, G.; Zhou, Z., An inverse problem for scattering by a doubly periodic structure, Trans. Am. Math. Soc., 350, 4089-4103 (1998) · Zbl 0898.35111 · doi:10.1090/S0002-9947-98-02227-2
[8] Colton, D.; Kress, R., Integral Equation Methods in Scattering Theory (1983), New York: Wiley, New York · Zbl 0522.35001
[9] Colton, D.; Kress, R.; Monk, P., Inverse scattering from an orthotropic medium, J. Comput. Appl. Math., 81, 269-298 (2007) · Zbl 0885.35143 · doi:10.1016/S0377-0427(97)00065-4
[10] Elschner, J.; Hsiao, G. C.; Rathsfeld, A., Grating profile reconstruction based on finite elements and optimization techniques, SIAM J. Appl. Math., 64, 525-545 (2003) · Zbl 1059.35165
[11] Elschner, J.; Hu, G., Global uniqueness in determining polygonal periodic structures with a minimal number of incident plane waves, Inverse Probl., 26 (2010) · Zbl 1210.35285 · doi:10.1088/0266-5611/26/11/115002
[12] Elschner, J.; Schmidt, G.; Yamamoto, M., An inverse problem in periodic diffractive optics: global uniqueness with a single wave number, Inverse Probl., 19, 779-787 (2003) · Zbl 1121.78325 · doi:10.1088/0266-5611/19/3/318
[13] Elschner, J.; Yamamoto, M., Uniqueness results for an inverse periodic transmission problem, Inverse Probl., 20, 1841-1852 (2004) · Zbl 1077.78009 · doi:10.1088/0266-5611/20/6/009
[14] Elschner, J.; Yamamoto, M., Uniqueness in determining polygonal periodic structures, Z. Anal. Anwend., 26, 165-177 (2007) · Zbl 1246.78018 · doi:10.4171/ZAA/1316
[15] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), New York: Springer, New York · Zbl 0562.35001
[16] Haddar, H.; Nguyen, T. P., Sampling methods for reconstructing the geometry of a local perturbation in unknown periodic layers, Comput. Math. Appl., 74, 2831-2855 (2017) · Zbl 1398.35225 · doi:10.1016/j.camwa.2017.07.015
[17] Harris, I.; Nguyen, D. L.; Sands, J.; Truong, T., On the inverse scattering from anisotropic periodic layers and transmission eigenvalues, Appl. Anal. (2020) · Zbl 1492.35424 · doi:10.1080/00036811.2020.1836349
[18] Hettlich, F.; Kirsch, A., Schiffer’s theorem in inverse scattering theory for periodic structures, Inverse Probl., 13, 351-361 (1997) · Zbl 0873.35108 · doi:10.1088/0266-5611/13/2/010
[19] Hu, G.; Qu, F.; Zhang, B., Direct and inverse problems for electromagnetic scattering by a doubly periodic structure with a partially coated dielectric, Math. Methods Appl. Sci., 33, 147-156 (2010) · Zbl 1180.35506
[20] Hu, G.; Qu, F.; Zhang, B., A linear sampling method for inverse problems of diffraction gratings of mixed type, Math. Methods Appl. Sci., 35, 1047-1066 (2012) · Zbl 1251.35188 · doi:10.1002/mma.2511
[21] Hu, G.; Yang, J.; Zhang, B., An inverse electromagnetic scattering problem for a bi-periodic inhomogeneous layer on a perfectly conducting plate, Appl. Anal., 90, 317-333 (2011) · Zbl 1209.35152 · doi:10.1080/00036811.2010.505564
[22] Hu, G.; Zhang, B., The linear sampling method for the inverse electromagnetic scattering by a partially coated bi-periodic structure, Math. Methods Appl. Sci., 34, 509-519 (2011) · Zbl 1211.35276 · doi:10.1002/mma.1375
[23] Kirsch, A., Uniqueness theorems in inverse scattering theory for periodic structures, Inverse Probl., 10, 145-152 (1994) · Zbl 0805.35155 · doi:10.1088/0266-5611/10/1/011
[24] Kirsch, A.; Kleinman, R. E.; Kress, R.; Martensen, E., An inverse problem for periodic structures, Inverse Scattering and Potential Problems Mathematical Physics, 75-93 (1995), Frankfurt: Peter Lang, Frankfurt · Zbl 0840.35121
[25] Nguyen, T. P., Differential imaging of local perturbations in anisotropic periodic media, Inverse Probl., 36 (2020) · Zbl 1435.78014 · doi:10.1088/1361-6420/ab2066
[26] Potthast, R., On the convergence of a new Newton-type method in inverse scattering, Inverse Probl., 17, 1419-1434 (2001) · Zbl 0985.35111 · doi:10.1088/0266-5611/17/5/312
[27] Qu, F.; Yang, J., On recovery of an inhomogeneous cavity in inverse acoustic scattering, Inverse Probl. Imaging, 12, 281-291 (2018) · Zbl 1395.35221 · doi:10.3934/ipi.2018012
[28] Qu, F.; Yang, J.; Zhang, B., Recovering an elastic obstacle containing embedded objects by the acoustic far-field measurements, Inverse Probl., 34 (2018) · Zbl 1474.74065 · doi:10.1088/1361-6420/aa9c26
[29] Qu, F.; Yang, J.; Zhang, H., Shape reconstruction in inverse scattering by an inhomogeneous cavity with internal measurements, SIAM J. Imaging Sci., 12, 788-808 (2019) · Zbl 1524.35765 · doi:10.1137/18M1232401
[30] Qu, F.; Zhang, B.; Zhang, H., A novel integral equation for scattering by locally rough surfaces and application to the inverse problem: the Neumann case, SIAM J. Sci. Comput., 41, A3673-A3702 (2019) · Zbl 1427.35364 · doi:10.1137/19M1240745
[31] Strycharz, B., An acoustic scattering problem for periodic, inhomogeneous media, Math. Methods Appl. Sci., 21, 969-983 (1998) · Zbl 0907.35095 · doi:10.1002/(SICI)1099-1476(19980710)21:10<969::AID-MMA982>3.0.CO;2-Y
[32] Strycharz, B., Uniqueness in the inverse transmission scattering problem for periodic media, Math. Methods Appl. Sci., 22, 753-772 (1998) · Zbl 0931.35120 · doi:10.1002/(SICI)1099-1476(199906)22:9<753::AID-MMA50>3.0.CO;2-U
[33] Yang, J.; Zhang, B., An inverse transmission scattering problem for periodic media, Inverse Probl., 27 (2011) · Zbl 1237.78018 · doi:10.1088/0266-5611/27/12/125010
[34] Yang, J.; Zhang, B., Uniqueness results in the inverse scattering problem for periodic structures, Math. Methods Appl. Sci., 35, 828-838 (2012) · Zbl 1236.35207 · doi:10.1002/mma.1609
[35] Yang, J.; Zhang, B.; Zhang, H., A sampling method for the inverse transmission problem for periodic media, Inverse Probl., 28 (2012) · Zbl 1236.78021 · doi:10.1088/0266-5611/28/3/035004
[36] Yang, J.; Zhang, B.; Zhang, H., Uniqueness in inverse acoustic and electromagnetic scattering by penetrable obstacles, J. Differ. Equ., 12, 6352-6383 (2018) · Zbl 1408.78006 · doi:10.1016/j.jde.2018.07.033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.