×

Denseness of intermediate \(\beta\)-shifts of finite-type. (English) Zbl 1442.37027

Summary: We determine the structure of the set of intermediate \(\beta\)-shifts of finite-type. Specifically, we show that this set is dense in the parameter space \[ \Delta := \{ (\beta , \alpha ) \in \mathbb{R}^{2} : \beta \in (1, 2) \text{ and } 0 \leq \alpha \leq 2 - \beta \}. \] This generalises the classical result of W. Parry [Acta Math. Acad. Sci. Hung. 11, 401–416 (1960; Zbl 0099.28103)] from 1960 for greedy \(\beta\)-shifts.

MSC:

37B10 Symbolic dynamics
37B51 Multidimensional shifts of finite type
11A67 Other number representations
11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure

Citations:

Zbl 0099.28103

References:

[1] Alsed\`a, Ll.; Ma\~nosas, F., Kneading theory for a family of circle maps with one discontinuity, Acta Math. Univ. Comenian. (N.S.), 65, 1, 11-22 (1996) · Zbl 0863.34046
[2] Awrejcewicz, Jan; Lamarque, Claude-Henri, Bifurcation and chaos in nonsmooth mechanical systems, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises 45, xviii+543 pp. (2003), World Scientific Publishing Co., Inc., River Edge, NJ · Zbl 1067.70001 · doi:10.1142/9789812564801
[3] Baker, Simon, On small bases which admit countably many expansions, J. Number Theory, 147, 515-532 (2015) · Zbl 1386.11022 · doi:10.1016/j.jnt.2014.08.003
[4] Zou, Yuru; Wang, Lijin; Lu, Jian; Baker, Simon, On small bases for which 1 has countably many expansions, Mathematika, 62, 2, 362-377 (2016) · Zbl 1419.11015 · doi:10.1112/S002557931500025X
[5] BV:2001 S.Banerjee and G.C.Verfghese, Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos and Nonlinear Control, Wiley-IEEE Press, 2001.
[6] Barnsley, Michael; Harding, Brendan; Vince, Andrew, The entropy of a special overlapping dynamical system, Ergodic Theory Dynam. Systems, 34, 2, 483-500 (2014) · Zbl 1290.37017 · doi:10.1017/etds.2012.140
[7] BM:2011 M.F.Barnsley and N.Mihalache, Symmetric itinerary sets, preprint, arXiv:1110.2817v1. · Zbl 1417.37141
[8] Barnsley, Michael; Steiner, Wolfgang; Vince, Andrew, Critical itineraries of maps with constant slope and one discontinuity, Math. Proc. Cambridge Philos. Soc., 157, 3, 547-565 (2014) · Zbl 1376.37031 · doi:10.1017/S0305004114000486
[9] Blanchard, F., \( \beta \)-expansions and symbolic dynamics, Theoret. Comput. Sci., 65, 2, 131-141 (1989) · Zbl 0682.68081 · doi:10.1016/0304-3975(89)90038-8
[10] Dajani, Karma; Kalle, Charlene, Random \(\beta \)-expansions with deleted digits, Discrete Contin. Dyn. Syst., 18, 1, 199-217 (2007) · Zbl 1119.37004 · doi:10.3934/dcds.2007.18.199
[11] Dajani, Karma; Kraaikamp, Cor, Random \(\beta \)-expansions, Ergodic Theory Dynam. Systems, 23, 2, 461-479 (2003) · Zbl 1035.37006 · doi:10.1017/S0143385702001141
[12] Dajani, Karma; de Vries, Martijn, Measures of maximal entropy for random \(\beta \)-expansions, J. Eur. Math. Soc. (JEMS), 7, 1, 51-68 (2005) · Zbl 1074.28008 · doi:10.4171/JEMS/21
[13] 1011470 I.Daubechies, R.DeVore, C.S.Gunturk and V.A.Vaishampayan, Beta expansions:a new approach to digitally corrected A/D conversion, IEEE International Symposium on Circuits and Systems. Proceedings (Cat.No.02CH37353) 2 (2002) II-784-II-787.
[14] Eckhardt, Bruno; Ott, Gerolf, Periodic orbit analysis of the Lorenz attractor, Z. Phys. B, 93, 2, 259-266 (1994) · doi:10.1007/BF01316970
[15] Erd\`“os, P\'”al; Jo\'o, Istv\'an; Komornik, Vilmos, Characterization of the unique expansions \(1=\sum^\infty_{i=1}q^{-n_i}\) and related problems, Bull. Soc. Math. France, 118, 3, 377-390 (1990) · Zbl 0721.11005
[16] Falconer, Kenneth, Fractal geometry, xxviii+337 pp. (2003), John Wiley & Sons, Inc., Hoboken, NJ · Zbl 1060.28005 · doi:10.1002/0470013850
[17] Falconer, Kenneth, Techniques in fractal geometry, xviii+256 pp. (1997), John Wiley & Sons, Ltd., Chichester · Zbl 0869.28003
[18] Glendinning, Paul, Topological conjugation of Lorenz maps by \(\beta \)-transformations, Math. Proc. Cambridge Philos. Soc., 107, 2, 401-413 (1990) · Zbl 0705.58035 · doi:10.1017/S0305004100068675
[19] Glendinning, Paul; Hall, Toby, Zeros of the kneading invariant and topological entropy for Lorenz maps, Nonlinearity, 9, 4, 999-1014 (1996) · Zbl 0896.58048 · doi:10.1088/0951-7715/9/4/010
[20] Hubbard, John H.; Sparrow, Colin T., The classification of topologically expansive Lorenz maps, Comm. Pure Appl. Math., 43, 4, 431-443 (1990) · Zbl 0714.58041 · doi:10.1002/cpa.3160430402
[21] Kalle, Charlene; Steiner, Wolfgang, Beta-expansions, natural extensions and multiple tilings associated with Pisot units, Trans. Amer. Math. Soc., 364, 5, 2281-2318 (2012) · Zbl 1295.11010 · doi:10.1090/S0002-9947-2012-05362-1
[22] Stolz:2017 K. Keller, T. Mangold, I. Stolz, and J. Werner, Permutation Entropy: New Ideas and Challenges, Entropy 19 (2017), 134.
[23] Komornik, Vilmos, Expansions in noninteger bases, Integers, 11B, Paper No. A9, 30 pp. (2011) · Zbl 1301.11008
[24] Komornik, Vilmos; Loreti, Paola, Unique developments in non-integer bases, Amer. Math. Monthly, 105, 7, 636-639 (1998) · Zbl 0918.11006 · doi:10.2307/2589246
[25] Li, JinJun; Li, Bing, Hausdorff dimensions of some irregular sets associated with \(\beta \)-expansions, Sci. China Math., 59, 3, 445-458 (2016) · Zbl 1338.11076 · doi:10.1007/s11425-015-5046-9
[26] Li, Bing; Sahlsten, Tuomas; Samuel, Tony, Intermediate \(\beta \)-shifts of finite type, Discrete Contin. Dyn. Syst., 36, 1, 323-344 (2016) · Zbl 1371.37023 · doi:10.3934/dcds.2016.36.323
[27] Lind, D. A., The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems, 4, 2, 283-300 (1984) · Zbl 0546.58035 · doi:10.1017/S0143385700002443
[28] Lind, Douglas; Marcus, Brian, An introduction to symbolic dynamics and coding, xvi+495 pp. (1995), Cambridge University Press, Cambridge · Zbl 1106.37301 · doi:10.1017/CBO9780511626302
[29] L:1963 E.N.Lorenz, Deterministic nonperiodic flow, J.Atmos.Sci.20 (1963) 130-141. · Zbl 1417.37129
[30] Par:1979 M.R.Palmer, On the classification of measure preserving transformations of Lebesgue spaces, Ph.D.thesis, University of Warwick, 1979.
[31] Parry, W., On the \(\beta \)-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11, 401-416 (1960) · Zbl 0099.28103 · doi:10.1007/BF02020954
[32] Parry, W., Representations for real numbers, Acta Math. Acad. Sci. Hungar., 15, 95-105 (1964) · Zbl 0136.35104 · doi:10.1007/BF01897025
[33] Parry, William, The Lorenz attractor and a related population model. Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), Lecture Notes in Math. 729, 169-187 (1979), Springer, Berlin · Zbl 0431.92022
[34] Q:2018 B.Quackenbush, Fiber density of intermediate \(\beta \)-shifts of finite type, M.Sc.thesis, California Polytechnic State University, 2018.
[35] R\'enyi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar, 8, 477-493 (1957) · Zbl 0079.08901 · doi:10.1007/BF02020331
[36] Sidorov, Nikita, Arithmetic dynamics. Topics in dynamics and ergodic theory, London Math. Soc. Lecture Note Ser. 310, 145-189 (2003), Cambridge Univ. Press, Cambridge · Zbl 1051.37007 · doi:10.1017/CBO9780511546716.010
[37] Sidorov, Nikita, Almost every number has a continuum of \(\beta \)-expansions, Amer. Math. Monthly, 110, 9, 838-842 (2003) · Zbl 1049.11085 · doi:10.2307/3647804
[38] Sidorov, Nikita; Vershik, Anatoly, Ergodic properties of the Erd\H os measure, the entropy of the golden shift, and related problems, Monatsh. Math., 126, 3, 215-261 (1998) · Zbl 0916.28012 · doi:10.1007/BF01367764
[39] Viswanath, Divakar, Symbolic dynamics and periodic orbits of the Lorenz attractor, Nonlinearity, 16, 3, 1035-1056 (2003) · Zbl 1030.37010 · doi:10.1088/0951-7715/16/3/314
[40] Williams, R. F., The structure of Lorenz attractors, Inst. Hautes \'Etudes Sci. Publ. Math., 50, 73-99 (1979) · Zbl 0484.58021
[41] Zhusubaliyev, Zhanybai T.; Mosekilde, Erik, Bifurcations and chaos in piecewise-smooth dynamical systems, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises 44, xii+363 pp. (2003), World Scientific Publishing Co., Inc., River Edge, NJ · Zbl 1047.34048 · doi:10.1142/5313
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.