×

Fiber denseness of intermediate \(\beta\)-shifts of finite type. (English) Zbl 1530.37061

The authors consider the intermediate \(\beta\)-shifts originating from the intermediate \(\beta\)-transformations \(T_{\beta,\alpha}^\pm\) defined from the two-parameter family of maps \(T_{\beta,\alpha}:[0,1] \rightarrow [0,1]\) where \(T_{\beta,\alpha}(x)= \beta x + \alpha {\textrm{ (mod }} 1)\) with the parameter space \[\Delta= \{ (\beta,\alpha) \in \mathbb{R}^2: \beta \in (1,2) {\textrm{ and }} 0<\alpha<2-\beta \}.\] The union of the images of \([0,1]\) under the \(T_{\beta,\alpha}^\pm\)-expansions \(\tau_{\beta,\alpha}^\pm(x)\) of \(x \in [0,1]\) is the kneading space \(\Omega_{\beta,\alpha}\) and the kneading invariants of \(\Omega_{\beta,\alpha}\) is the pair of sequences \((k_+, k_- ) = (\tau_{\beta,\alpha}^+(c_{\beta,\alpha}), \tau_{\beta,\alpha}^-(c_{\beta,\alpha}))\) for the critical point \(c_{\beta,\alpha} = (1 - \alpha)/\beta\); \(\Omega_{\beta,\alpha}\) is a subshift.
B. Li et al. [Proc. Am. Math. Soc. 147, No. 5, 2045–2055 (2019; Zbl 1442.37027)] proved that the set of \(\Delta\)-parameters such that \(\Omega_{\beta,\alpha}\) is a subshift of finite type is dense in \(\Delta\). In the paper here, the authors fix a periodic \(k_+\) and define \(\Delta(k_+)\) to be the set of \(\Delta\)-parameters such that \(\tau_{\beta,\alpha}^+(c_{\beta,\alpha})=k_+\). One of their main results is that the set of \(\Delta\)-parameters such that \(\Omega_{\beta,\alpha}\) is a subshift of finite type is dense in the fiber \(\Delta(k_+)\). Similarly, the set of \(\Delta\)-parameters such that \(\Omega_{\beta,\alpha}\) is a subshift of finite type is dense in the fiber \(\Delta(k_-)\). These findings are similar to a result of W. Parry [Acta Math. Acad. Sci. Hung. 11, 401–416 (1960; Zbl 0099.28103)] showing that the set of \(\beta\)’s such that \(\Omega_{\beta,0}\) is a subshift of finite type is dense in \((1,2)\).
B. Quackenbush et al. [Mathematics 8, No. 6, 903–919 (2020; doi:10.3390/math8060903)] proved for a fixed multinacci number \(\beta \in (1,2)\) that the set of parameters such that \(\Omega_{\beta,\alpha}\) is a subshift of finite type is dense in \(\Delta(\beta)=\{(\beta,\alpha)\}\). The authors of the present paper show that if \(\beta\) is not a multinacci number then there are atmost countably many subintervals of \(\Delta(\beta)\) such that the set of \((\beta,\alpha)\)’s where \(\Omega_{\beta,\alpha}\) is a subshift of finite type is dense in each subinterval.

MSC:

37E05 Dynamical systems involving maps of the interval
37B10 Symbolic dynamics
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
Full Text: DOI

References:

[1] Alsedà, L.; Mañosas, F., Kneading theory for a family of circle maps with one discontinuity, Acta Math. Univ. Comenian., 65, 11-22 (1996) · Zbl 0863.34046
[2] Ban, J-C; Li, B., The multifractal spectra for the recurrence rates of beta-transformations, J. Math. Anal. Appl., 420, 1662-79 (2014) · Zbl 1347.37031 · doi:10.1016/j.jmaa.2014.06.051
[3] Barnsley, M.; Steiner, W.; Vince, A., Critical itineraries of maps with constant slope and one discontinuity, Math. Proc. Camb. Phil. Soc., 157, 547-65 (2014) · Zbl 1376.37031 · doi:10.1017/S0305004114000486
[4] Blanchard, F., \(β\)-expansions and symbolic dynamics, Theor. Comput. Sci., 65, 131-41 (1989) · Zbl 0682.68081 · doi:10.1016/0304-3975(89)90038-8
[5] Bruin, H.; Carminati, C.; Kalle, C., Matching for generalised \(β\)-transformations, Indag. Math., 28, 55-73 (2017) · Zbl 1360.37096 · doi:10.1016/j.indag.2016.11.005
[6] Cui, H.; Ding, Y., Renormalization and conjugacy of piecewise linear Lorenz maps, Adv. Math., 271, 235-72 (2015) · Zbl 1353.37081 · doi:10.1016/j.aim.2014.11.024
[7] Ding, Y., Renormalization and \(α\)-limit set for expanding Lorenz maps, Discrete Contin. Dyn. Syst., 29, 979-99 (2011) · Zbl 1228.37032 · doi:10.3934/dcds.2011.29.979
[8] Ding, Y.; Sun, Y., Complete invariants and parametrization of expansive Lorenz maps (2021)
[9] Ding, Y.; Sun, Y., \(α\)-limit sets and Lyapunov function for maps with one topological attractor, Acta Math. Sci. B, 42, 813-24 (2022) · Zbl 1513.37014 · doi:10.1007/s10473-022-0225-6
[10] Glendinning, P., Topological conjugation of Lorenz maps by \(β\)-transformations, Math. Proc. Camb. Phil. Soc., 107, 401-13 (1990) · Zbl 0705.58035 · doi:10.1017/S0305004100068675
[11] Glendinning, P.; Hall, T., Zeros of the kneading invariant and topological entropy for Lorenz maps, Nonlinearity, 9, 999-1014 (1996) · Zbl 0896.58048 · doi:10.1088/0951-7715/9/4/010
[12] Glendinning, P.; Sidorov, N., The doubling map with asymmetrical holes, Ergod. Theory Dyn. Syst., 35, 1208-28 (2015) · Zbl 1358.37031 · doi:10.1017/etds.2013.98
[13] Glendinning, P.; Sparrow, C., Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps, Physica D, 62, 22-50 (1993) · Zbl 0783.58046 · doi:10.1016/0167-2789(93)90270-B
[14] Hubbard, J. H.; Sparrow, C. T., The classification of topologically expansive Lorenz maps, Commun. Pure Appl. Math., 43, 431-43 (1990) · Zbl 0714.58041 · doi:10.1002/cpa.3160430402
[15] Kalle, C.; Kong, D.; Langeveld, N.; Li, W., The \(β\)-transformation with a hole at 0, Ergod. Theory Dyn. Syst., 40, 2482-514 (2020) · Zbl 1448.11153 · doi:10.1017/etds.2019.12
[16] Kalle, C.; Steiner, W., Beta-expansions, natural extensions and multiple tilings associated with Pisot units, Trans. Am. Math. Soc., 364, 2281-318 (2012) · Zbl 1295.11010 · doi:10.1090/S0002-9947-2012-05362-1
[17] Komornik, V.; Loreti, P., Unique developments in non-integer bases, Am. Math. Mon., 105, 636-9 (1998) · Zbl 0918.11006 · doi:10.1080/00029890.1998.12004937
[18] Komornik, V.; Loreti, P., Expansions in noninteger bases, Integers, 11B, paper no. A9, p 30 (2011) · Zbl 1301.11008
[19] Li, B.; Persson, T.; Wang, B.; Wu, J., Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions, Math. Z., 276, 799-827 (2014) · Zbl 1316.11069 · doi:10.1007/s00209-013-1223-0
[20] Li, B.; Sahlsten, T.; Samuel, T., Intermediate \(β\)-shifts of finite type, Discrete Contin. Dyn. Syst., 36, 323-44 (2016) · Zbl 1371.37023 · doi:10.3934/dcds.2016.36.323
[21] Li, B.; Sahlsten, T.; Samuel, T.; Steiner, W., Denseness of intermediate \(β\)-shifts of finite-type, Proc. Am. Math. Soc., 147, 2045-55 (2019) · Zbl 1442.37027 · doi:10.1090/proc/14279
[22] Lind, D., The entropies of topological Markov shifts and a related class of algebraic integers, Ergod. Theory Dyn. Syst., 4, 283-300 (1984) · Zbl 0546.58035 · doi:10.1017/S0143385700002443
[23] Milnor, J.; Thurston, W., On Iterated Maps of the Interval (Lecture Notes in Mathematics vol 1342) (1988), Springer · Zbl 0664.58015
[24] Palmer, M R1979On the classification of measure preserving transformations of Lebesgue spacesPhD ThesisUniversity of Warwick
[25] Parry, W., On the \(β\)-expansions of real numbers, Acta Math. Acad. Sci. Hung., 11, 401-16 (1960) · Zbl 0099.28103 · doi:10.1007/BF02020954
[26] Parry, W., Representations for real numbers, Acta Math. Acad. Sci. Hung., 15, 95-105 (1964) · Zbl 0136.35104 · doi:10.1007/BF01897025
[27] Pierre, M. S., Topological and measurable dynamics of Lorenz maps, Dissertationes Math. (Rozprawy Mat.), 382, 134 (1999) · Zbl 0956.37006
[28] Quackenbush, B.; Samuel, T.; West, M., Periodic intermediate \(β\)-expansions of Pisot numbers, Mathematics, 8, 903-19 (2020) · doi:10.3390/math8060903
[29] Rényi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., 8, 477-93 (1957) · Zbl 0079.08901 · doi:10.1007/BF02020331
[30] Sidorov, N., Almost every number has a continuum of \(β\)-expansions, Am. Math. Mon., 110, 838-42 (2003) · Zbl 1049.11085 · doi:10.1080/00029890.2003.11920025
[31] Li, J.; Li, B., Hausdorff dimensions of some irregular sets associated with \(β\)-expansions, Sci. China Math., 59, 445-58 (2016) · Zbl 1338.11076 · doi:10.1007/s11425-015-5046-9
[32] Sidorov, N., Supercritical holes for the doubling map, Acta Math. Hung., 143, 298-312 (2014) · Zbl 1340.37007 · doi:10.1007/s10474-014-0403-7
[33] Tan, B.; Wang, B., Quantitative recurrence properties for beta-dynamical system, Adv. Math., 228, 2071-97 (2011) · Zbl 1284.11113 · doi:10.1016/j.aim.2011.06.034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.