×

A characterization of the natural embedding of the split Cayley hexagon in \(\mathrm{PG}(6,q)\) by intersection numbers in finite projective spaces of arbitrary dimension. (English) Zbl 1277.05028

Summary: We prove that a non-empty set \(\mathcal{L}\) of at most \(q^5+q^4+q^3+q^2+q+1\) lines of \(\mathrm{PG}(n,q)\) with the properties that (1) every point of \(\mathrm{PG}(n,q)\) is incident with either \(0\) or \(q+1\) elements of \(\mathcal{L}\), (2) every plane of \(\mathrm{PG}(n,q)\) is incident with either \(0\), \(1\) or \(q+1\) elements of \(\mathcal{L}\), (3) every solid of \(\mathrm{PG}(n,q)\) is incident with either \(0\), \(1\), \(q+1\) or \(2_q+1\) elements of \(\mathcal{L}\), and (4) every four-dimensional subspace of \(\mathrm{PG}(n,q)\) is incident with at most \(q^3-q^2+4q\) elements of \(\mathcal{L}\) is necessarily the set of lines of a split Cayley hexagon \(H(q)\) naturally embedded in \(\mathrm{PG}(6,q)\).

MSC:

05B25 Combinatorial aspects of finite geometries

References:

[1] Bamberg, J.; Durante, N., Low dimensional models of the finite split Cayley hexagon, (Theory and Applications of Finite Fields. Theory and Applications of Finite Fields, Contemp. Math., vol. 579 (2012), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-19 · Zbl 1278.05048
[2] Brouwer, A.; Cohen, A.; Neumaier, A., Distance-regular graphs, (Ergebnisse der Mathematik und Ihrer Grenzgebiete (1989), Springer) · Zbl 0747.05073
[3] Cameron, P. J.; Kantor, W. M., 2-transitive and antiflag transitive collineation groups of finite projective spaces, J. Algebra, 60, 2, 384-422 (1979) · Zbl 0417.20044
[4] Cuypers, H.; Steinbach, A. I., Weak embeddings of generalized hexagons and groups of type \(G_2\), J. Group Theory, 1, 3, 225-236 (1998) · Zbl 0914.51004
[5] De Winter, S.; Schillewaert, J., Characterizations of finite classical polar spaces by intersection numbers with hyperplanes and spaces of codimension 2, Combinatorica, 30, 1, 25-45 (2010) · Zbl 1224.05074
[6] Hirschfeld, J.; Thas, J., (General Galois Geometries. General Galois Geometries, Oxford Mathematical Monographs (1991), Clarendon Press) · Zbl 0789.51001
[8] Schillewaert, J.; Thas, J. A.; Van Maldeghem, H., A characterization of the finite Veronesean by intersection properties, Ann. Comb., 16, 2, 331-348 (2012) · Zbl 1261.51008
[9] Thas, J. A.; Van Maldeghem, H., Some characterizations of finite Hermitian Veroneseans, Des. Codes Cryptogr., 34, 2-3, 283-293 (2005) · Zbl 1064.51009
[10] Thas, J. A.; Van Maldeghem, H., Characterizations of Veronese and Segre varieties, J. Geom., 101, 1-2, 211-222 (2011) · Zbl 1248.51005
[11] Thas, J. A.; Van Maldeghem, H., 1-polarized pseudo-hexagons, Innov. Incidence Geom., 6/7, 307-325 (2007/08) · Zbl 1176.51003
[12] Thas, J. A.; Van Maldeghem, H., A characterization of the natural embedding of the split Cayley hexagon \(H(q)\) in \(PG(6, q)\) by intersection numbers, European J. Combin., 29, 6, 1502-1506 (2008) · Zbl 1178.51004
[13] Thas, J. A.; Van Maldeghem, H., Flat lax and weak embeddings of finite generalized hexagons, European J. Combin., 19, 733-751 (1998) · Zbl 0927.51013
[14] Tits, J., Sur la trialité et certains groupes qui s’en déduisent, Inst. Hautes Études Sci. Publ. Math., 2, 13-60 (1959), URL http://www.numdam.org/item?id=PMIHES_1959__2__13_0 · Zbl 0088.37204
[15] van Maldeghem, H., Generalized Polygons (1998), Birkhäuser Basel · Zbl 0914.51005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.