×

Synergy-incorporated Bayesian Petri net: a method for mining “and/or” relation and synergy effect with application in probabilistic reasoning. (English) Zbl 07903547

Summary: Bayesian networks (BNs) are widely used for knowledge representation and reasoning. However, they suffer from the following limitations: 1) They are unable to explicitly learn “AND” relations and synergy effects from data; 2) They do not depict “AND” relations among causes directly, which sometimes leads to the high complexity of constructing conditional probability tables (CPTs); and 3) During their knowledge representation and reasoning, they fail to express any synergy (catalytic or inhibitory) effect that a non-causal variable may have on a reasoning rule. To address the mentioned issues, this study proposes a method for mining and modelling “AND/OR” relations and synergy effects called Synergy-incorporated Bayesian Petri Net (SBPN). The method integrates a BN with Petri net concepts. It can directly learn “AND/OR” relations and synergy effects from data, harnessing the power of Petri nets to model “AND/OR” relations in BNs, resulting in a compact CPT. Synergy effects are easily depicted via the SBPN, and their influence on the reasoning procedure can be formally expressed using the SBPN. Experimental results on open datasets demonstrate the effectiveness and advantages of the proposed method for knowledge mining and probabilistic reasoning.

MSC:

68-XX Computer science
91-XX Game theory, economics, finance, and other social and behavioral sciences

Software:

VoCSK; UCI-ml
Full Text: DOI

References:

[1] Liu, J.; Chen, T.; Wang, C.; Liang, J.; Chen, L.; Xiao, Y.; Chen, Y.; Jin, K., VoCSK: Verb-oriented commonsense knowledge mining with taxonomy-guided induction, Artif. Intell., 310, Article 103744 pp., 2022 · Zbl 1535.68411
[2] Vowels, M. J.; Camgoz, N. C.; Bowden, R., D’ya like dags? A survey on structure learning and causal discovery, ACM Comput. Surv., 55, 4, 1-36, 2022
[3] Chasseray, Y.; Barthe-Delanoe, A. M.; Negny, S.; Le Lann, J. M., Knowledge extraction from textual data and performance evaluation in an unsupervised context, Inf. Sci., 629, 324-343, 2023
[4] Audemard, G.; Bellart, S.; Bounia, L.; Koriche, F.; Lagniez, J. M.; Marquis, P., On the explanatory power of Boolean decision trees, Data Knowl. Eng., 142, Article 102088 pp., 2022
[5] de Waal, A.; Joubert, J. W., Explainable Bayesian networks applied to transport vulnerability, Expert Syst. Appl., 209, Article 118348 pp., 2022
[6] Ghilardi, S.; Gianola, A.; Montali, M.; Rivkin, A., Petri net-based object-centric processes with read-only data, Inf. Syst., 107, Article 102011 pp., 2022
[7] Mou, X.; Mao, L. X.; Liu, H. C.; Zhou, M., Spherical linguistic Petri nets for knowledge representation and reasoning under large group environment, IEEE Trans. Artif. Intell., 3, 3, 402-413, 2022
[8] Bai, L.; Yu, W.; Chai, D.; Zhao, W.; Chen, M., Temporal knowledge graphs reasoning with iterative guidance by temporal logical rules, Inf. Sci., 621, 22-35, 2023
[9] Popescu, D. C.; Dumitrache, I., Knowledge representation and reasoning using interconnected uncertain rules for describing workflows in complex systems, Inf. Fusion, 93, 412-428, 2023
[10] Xu, J.; Ding, R.; Li, M.; Dai, T.; Zheng, M.; Yu, T.; Sui, Y., A new Bayesian network model for risk assessment based on cloud model, interval type-2 fuzzy sets and improved DS evidence theory, Inf. Sci., 618, 336-355, 2022 · Zbl 1533.91118
[11] Stankovič, M.; Bartocci, E.; Kovács, L., Moment-based analysis of Bayesian network properties, Theor. Comput. Sci., 903, 113-133, 2022 · Zbl 07467471
[12] Li, L.; Deng, M.; Liu, B.; Li, Z., State estimation in labeled time Petri net systems using observed modified state class graph, Inf. Sci., 656, Article 119922 pp., 2024 · Zbl 1535.68163
[13] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 1988, Morgan Kaufmann: Morgan Kaufmann San Mateo, CA
[14] Galán, S. F.; Díez, F. J., Modeling dynamic causal interaction with Bayesian networks: temporal noisy gates, (Proceedings of 2nd International Workshop on Causal Networks, 2000), 1-5
[15] Diez, F. J.; Druzdzel, M. J., Canonical Probabilistic Models for Knowledge Engineering, Technical Report, CISIAD-06-01, 2006, UNED: UNED Spain
[16] Ma, S.; Li, J.; Liu, L.; Le, T. D., Mining combined causes in large data sets, Knowl.-Based Syst., 92, 104-111, 2016
[17] Zhang, H.; Yan, C.; Zhou, S.; Guan, J.; Zhang, J., Combined cause inference: Definition, model and performance, Inf. Sci., 574, 431-443, 2021 · Zbl 07775620
[18] Woudenberg, S. P.; Van Der Gaag, L. C.; Rademaker, C. M., An intercausal cancellation model for Bayesian-network engineering, Int. J. Approx. Reasoning, 63, 32-47, 2015 · Zbl 1346.68210
[19] Xiang, Y.; Jia, N., Modeling causal reinforcement and undermining for efficient CPT elicitation, IEEE Trans. Knowl. Data Eng., 19, 12, 1708-1718, 2007
[20] Xiang, Y.; Loker, D., Trans-causalizing NAT-modeled Bayesian networks, IEEE T. Cybern., 52, 5, 3553-3566, 2020
[21] Shi, H.; Yu, Y. X.; Liu, R.; Liu, H. C., Probabilistic linguistic Petri nets for knowledge representation and acquisition with dynamic consensus reaching process, IEEE Trans. Fuzzy Syst., 32, 4, 2198-2210, 2024
[22] Liu, H. C.; Luan, X.; Zhou, M.; Xiong, Y., A new linguistic Petri net for complex knowledge representation and reasoning, IEEE Trans. Knowl. Data Eng., 34, 3, 1011-1020, 2022
[23] Wang, X.; Lu, F.; Zhou, M.; Zeng, Q., A synergy-effect-incorporated fuzzy Petri net modeling paradigm with application in risk assessment, Expert Syst. Appl., 199, Article 117037 pp., 2022
[24] Spirtes, P.; Glymour, C. N.; Scheines, R., Causation, Prediction, and Search, 2000, MIT Press
[25] Biswas, R.; Mukherjee, S., Consistent causal inference from time series with PC algorithm and its time-aware extension, Stat. Comput., 34, 1, 14, 2024 · Zbl 1523.62005
[26] Srivastava, A.; Chockalingam, S. P.; Aluru, S., A parallel framework for constraint-based Bayesian network learning via Markov blanket discovery, IEEE Trans. Parallel Distrib. Syst., 34, 6, 1699-1715, 2023
[27] Villa-Blanco, C.; Bregoli, A.; Bielza, C.; Larrañaga, P.; Stella, F., Constraint-based and hybrid structure learning of multidimensional continuous-time Bayesian network classifiers, Int. J. Approx. Reasoning, 159, Article 108945 pp., 2023 · Zbl 07713741
[28] Hoyer, P.; Janzing, D.; Mooij, J.; Peters, J.; Schölkopf, B., Nonlinear causal discovery with additive noise models, (In: Proceedings of Advances in Neural Information Processing Systems, 2009), 689-696
[29] Reisach, A.; Tami, M.; Seiler, C.; Chambaz, A.; Weichwald, S., A scale-invariant sorting criterion to find a causal order in additive noise models, (In: Proceedings of Advances in Neural Information Processing Systems, 2023), 785-807
[30] Zeng, Y.; Hao, Z.; Cai, R.; Xie, F.; Huang, L.; Shimizu, S., Nonlinear causal discovery for high-dimensional deterministic data, IEEE Trans. Neural Netw. Learn. Syst., 34, 5, 2234-2245, 2023
[31] Aliferis, C. F.; Statnikov, A.; Tsamardinos, I.; Mani, S.; Koutsoukos, X. D., Local causal and Markov blanket induction for causal discovery and feature selection for classification part I: Algorithms and empirical evaluation, J. Mach. Learn. Res., 11, 171-234, 2010 · Zbl 1242.68197
[32] He, L.; Liu, G.; Zhou, M., Petri-net-based model checking for privacy-critical multiagent systems, IEEE Trans. Comput. Soc. Syst., 10, 2, 563-576, 2022
[33] G. Liu, Petri Nets: Theoretical Models and Analysis Methods for Concurrent Systems, Springer Nature, 2022. [dataset]. · Zbl 1512.68001
[34] J. Czerniak, Acute Inflammations, UCI Machine Learning Repository, 2014. https://doi.org/10.24432/C5V59S. [dataset].
[35] P. Cortez, Student Performance, UCI Machine Learning Repository, 2014. https://doi.org/10.24432/C5TG7T.
[36] Czerniak, J.; Zarzycki, H., Application of rough sets in the presumptive diagnosis of urinary system diseases, (In: Artificial Intelligence and Security in Computing Systems, 2003), 41-51
[37] Gretton, A.; Bousquet, O.; Smola, A.; Schölkopf, B., Measuring statistical dependence with Hilbert-Schmidt norms, Int. Conf. Algorith. Learn. Theory, 63-77, 2005 · Zbl 1168.62354
[38] Taleb-Berrouane, M.; Khan, F.; Amyotte, P., Bayesian Stochastic Petri Nets (BSPN)-A new modelling tool for dynamic safety and reliability analysis, Reliab. Eng. Syst. Saf., 193, Article 106587 pp., 2020
[39] Santana, J. A.D.; Orozco, J. L.; Lantigua, D. F.; Furka, D.; Furka, S.; Cruz, A. G., Using integrated Bayesian-Petri Net method for individual impact assessment of domino effect accidents, J. Clean Prod., 294, Article 126236 pp., 2021
[40] Yue, W.; Gui, W.; Xie, Y., Experiential knowledge representation and reasoning based on linguistic Petri nets with application to aluminum electrolysis cell condition identification, Inf. Sci., 529, 141-165, 2020
[41] Salmerón, A.; Rumí, R.; Langseth, H.; Nielsen, T. D.; Madsen, A. L., A review of inference algorithms for hybrid Bayesian networks, J. Artif. Intell. Res., 62, 799-828, 2018 · Zbl 1448.68411
[42] Yang, J.; Yang, L.; Wang, H.; Gao, Y.; Zhao, Y.; Xie, X.; Lu, Y., Representation learning for knowledge fusion and reasoning in Cyber-Physical-Social Systems: Survey and perspectives, Inf. Fusion, 90, 59-73, 2023
[43] Andrews, J.; Tolo, S., Dynamic and dependent tree theory (D2T2): A framework for the analysis of fault trees with dependent basic events, Reliab. Eng. Syst. Saf., 230, Article 108959 pp., 2023
[44] Li, K.; Lu, J.; Zuo, H.; Zhang, G., Source-free multi-domain adaptation with fuzzy rule-based deep neural networks, IEEE Trans. Fuzzy Syst., 31, 12, 4180-4194, 2023
[45] Chickering, D. M., Optimal structure identification with greedy search, J. Mach. Learn. Res., 3, 507-554, 2002 · Zbl 1084.68519
[46] J. Cussens, GOBNILP: Learning Bayesian network structure with integer programming, in: International Conference on Probabilistic Graphical Models, 2020, pp. 605-608.
[47] Gámez, J. A.; Mateo, J. L.; Puerta, J. M., Learning Bayesian networks by hill climbing: efficient methods based on progressive restriction of the neighborhood, Data Min. Knowl. Discov., 22, 1, 106-148, 2011 · Zbl 1235.68152
[48] Zhou, F.; He, K.; Wang, K.; Xu, Y.; Ni, Y., Functional Bayesian networks for discovering causality from multivariate functional data, Biometrics, 79, 4, 3279-3293, 2023 · Zbl 1543.62659
[49] Kitson, N. K.; Constantinou, A. C.; Guo, Z.; Liu, Y.; Chobtham, K., A survey of Bayesian network structure learning, Artif. Intell. Rev., 56, 8, 8721-8814, 2023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.