×

Estimation of Gaussian directed acyclic graphs using partial ordering information with applications to DREAM3 networks and dairy cattle data. (English) Zbl 07692368

Summary: Estimating a directed acyclic graph (DAG) from observational data represents a canonical learning problem and has generated a lot of interest in recent years. Research has focused mostly on the following two cases: when no information regarding the ordering of the nodes in the DAG is available and when a domain-specific complete ordering of the nodes is available. In this paper, motivated by a recent application in dairy science, we develop a method for DAG estimation for the middle scenario, where partition-based partial ordering of the nodes is known based on domain-specific knowledge. We develop an efficient algorithm that solves the posited problem, coined Partition-DAG. Through extensive simulations, using the DREAM3 Yeast networks, we illustrate that Partition-DAG effectively incorporates the partial ordering information to improve both speed and accuracy. We then illustrate the usefulness of Partition-DAG by applying it to recently collected dairy cattle data, and inferring relationships between various variables involved in dairy agroecosystems.

MSC:

62Pxx Applications of statistics

References:

[1] ALTOMARE, D., CONSONNI, G. and LA ROCCA, L. (2013). Objective Bayesian search of Gaussian directed acyclic graphical models for ordered variables with non-local priors. Biometrics 69 478-487. · Zbl 1274.62709 · doi:10.1111/biom.12018
[2] ARAGAM, B., AMINI, A. A. and ZHOU, Q. (2016). Learning directed acyclic graphs with penalized neighbourhood regression. arXiv.
[3] ARAGAM, B. and ZHOU, Q. (2015). Concave penalized estimation of sparse Gaussian Bayesian networks. J. Mach. Learn. Res. 16 2273-2328. · Zbl 1351.68203
[4] BARGO, F., MULLER, L. D., KOLVER, E. S. and DELAHOY, J. E. (2003). Invited review: Production and digestion of supplemented dairy cows on pasture. J. Dairy Sci. 86 1-42.
[5] Cao, X., Khare, K. and Ghosh, M. (2019). Posterior graph selection and estimation consistency for high-dimensional Bayesian DAG models. Ann. Statist. 47 319-348. · Zbl 1417.62140 · doi:10.1214/18-AOS1689
[6] CHICKERING, D. M. (2002). Optimal structure identification with greedy search. J. Mach. Learn. Res. 3 507-554. · Zbl 1084.68519
[7] COLOMBO, D. and MAATHIUS, M. H. (2014). Order-independent constraint-based causal structure learning. J. Mach. Learn. Res. 15 3921-3962. · Zbl 1312.68165
[8] CONSONNI, G., LA ROCCA, L. and PELUSO, S. (2017). Objective Bayes covariate-adjusted sparse graphical model selection. Scand. J. Stat. 44 741-764. · Zbl 06774144 · doi:10.1111/sjos.12273
[9] DILLON, P. (2006). Achieving high dry-matter intake from pastures with grazing dairy cows. In Fresh Herbage for Dairy Cattle (A. Elgersma, J. Dijkstra and S. Tamminga, eds.) Springer, Netherlands. · doi:10.1007/978-1-4020-5452-5_1
[10] ELGERSMA, A., DIJKSTRA, J. and TAMMINGA, S. (2006). Fresh Herbage for Dairy Cattle. Springer, Netherlands.
[11] ELLIS, B. and WONG, W. H. (2008). Learning causal Bayesian network structures from experimental data. J. Amer. Statist. Assoc. 103 778-789. · Zbl 1471.62056 · doi:10.1198/016214508000000193
[12] EMMERT-STREIB, F., DEHMER, M. and HAIBE-KAINS, B. (2014). Gene regulatory networks and their applications: Understanding biological and medical problems in terms of networks. Front. Cell Dev. Biol. 2 38.
[13] GÁMEZ, J. A., MATEO, J. L. and PUERTA, J. M. (2011). Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood. Data Min. Knowl. Discov. 22 106-148. · Zbl 1235.68152 · doi:10.1007/s10618-010-0178-6
[14] GAMEZ, J. A., MATEO, J. L. and PUERTA, J. M. (2012). One iteration chc algorithm for learning Bayesian networks: An effective and efficient algorithm for high dimensional problems. Prog. Artif. Intell. 1 329-346.
[15] GEIGER, D. and HECKERMAN, D. (2013). Learning Gaussian networks. Available at arXiv:1302.6808.
[16] HAUSER, A. and BÜHLMANN, P. (2012). Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res. 13 2409-2464. · Zbl 1433.68346
[17] HECKERMAN, D., GEIGER, D. and CHICKERING, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Mach. Learn. 20 197-243. · Zbl 0831.68096
[18] HOYER, P. O., HYVARINEN, A., SCHEINES, R., SPIRTES, P., RAMSEY, J., LACERDA, G. and SHIMIZU, S. (2008). Causal discovery of linear acyclic models with arbitrary distributions. In Proc. 24th Conference on Uncertainty in Artificial Intelligence (UAI2008) 282-289.
[19] HUANG, J. Z., LIU, N., POURAHMADI, M. and LIU, L. (2006). Covariance matrix selection and estimation via penalised normal likelihood. Biometrika 93 85-98. · Zbl 1152.62346 · doi:10.1093/biomet/93.1.85
[20] JALVINGH, A. W. (1992). The possible role of existing models in on-farm decision support in dairy cattle and swine production. Livest. Prod. Sci. 31 355-365.
[21] KALISCH, M. and BUHLMANN, P. (2007). Estimating high-dimensional directed acyclic graphs with the pc-algorithm. J. Mach. Learn. Res. 8 613-636. · Zbl 1222.68229
[22] KHARE, K., OH, S.-Y. and RAJARATNAM, B. (2015). A convex pseudolikelihood framework for high dimensional partial correlation estimation with convergence guarantees. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 803-825. · Zbl 1414.62183 · doi:10.1111/rssb.12088
[23] KHARE, K., OH, S., RAHMAN, S. and RAJARATNAM, B. (2017). A convex framework for high-dimensional sparse Cholesky based covariance estimation. Mach. Learn. 108 2061-2086. · Zbl 1447.62048
[24] LAM, W. and BACCHUS, F. (1994). Learning Bayesian belief networks: An approach based on the MDL principle. Comput. Intell. 10 269-293.
[25] LE, T., HOANG, T., LI, J. and LIU, L. (2015). A fast pc algorithm for high dimensional causal discovery with multi-core pcs. IEEE/ACM Trans. Comput. Biol. Bioinform. 16.
[26] LI, C., SHEN, X. and PAN, W. (2020). Likelihood ratio tests for a large directed acyclic graph. J. Amer. Statist. Assoc. 115 1304-1319. · Zbl 1441.62249 · doi:10.1080/01621459.2019.1623042
[27] LIU, H., ROEDER, K. and WASSERMAN, L. (2010). Stability approach to regularization selection (stars) for high dimensional graphical models. In Advances in Neural Information Processing Systems 23.
[28] MARBACH, D., SCHAFFTER, T., MATTIUSSI, C. and FLOREANO, D. (2009). Generating realistic in silico gene networks for performance assessment of reverse engineering methods. J. Comput. Biol. 16 229-239. · doi:10.1089/cmb.2008.09TT
[29] MARBACH, D., PRILL, R. J., SCHAFFTER, T., MATTIUSSI, C., FLOREANO, D. and STOLOVITZKY, G. (2010). Revealing strengths and weaknesses of methods for gene network inference. PNAS 107 6286-6291. · doi:10.1073/pnas.0913357107
[30] MARBACH, D., COSTELLO, J. C., KÜFFNER, R., VEGA, N. M., PRILL, R. J., CAMACHO, D. M., ALLISON, K. R., ADERHOLD, A., BONNEAU, R. et al. (2012). Wisdom of crowds for robust gene network inference. Nat. Methods 9 796.
[31] Mazumder, R., Friedman, J. H. and Hastie, T. (2011). SparseNet: Coordinate descent with nonconvex penalties. J. Amer. Statist. Assoc. 106 1125-1138. · Zbl 1229.62091 · doi:10.1198/jasa.2011.tm09738
[32] MEEK, C. (1995). Causal inference and causal explanation with background knowledge. In UAI’95: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence 403-410.
[33] MEEK, C. (1997). Graphical models: Selecting causal and statistical models Technical report, Ph.D. Thesis, Carnegie Mellon Univ.
[34] MOROTA, G., VENTURA, R., SLIVA, F., KOYAMA, M. and FERNANDO, S. (2018). Machine learning and data mining advance predictive big data analysis in precision animal agriculture. In Big Data Analytics and Precision Animal Agriculture Symposium Univ. Nebraska-Lincoln.
[35] NANDY, P., HAUSER, A. and MAATHUIS, M. H. (2018). High-dimensional consistency in score-based and hybrid structure learning. Ann. Statist. 46 3151-3183. · Zbl 1411.62144 · doi:10.1214/17-AOS1654
[36] PERKOVIC, E., KALISCH, M. and MAATHUIS, M. H. (2017). Interpreting and using cpdags with background knowledge. In Proceedings UAI 2017.
[37] PETERS, J., BÜHLMANN, P. and MEINSHAUSEN, N. (2016). Causal inference by using invariant prediction: Identification and confidence intervals. J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 947-1012. · Zbl 1414.62297 · doi:10.1111/rssb.12167
[38] PRILL, R. J., MARBACH, D., SAEZ-RODRIGUEZ, J., SORGER, P. K., ALEXOPOULOS, L. G., XUE, X., CLARKE, N. D., ALTAN-BONNET, G. and STOLOVITZKY, G. (2010). Towards a rigorous assessment of systems biology models: The DREAM3 challenges. PLoS ONE 5 1-18. · doi:10.1371/journal.pone.0009202
[39] RAHMAN, S., KHARE, K., MICHAILIDIS, G., MARTINEZ, C. and CARULLA, J. (2023a). Supplement A to “Estimation of Gaussian directed acyclic graphs using partial ordering information with applications to DREAM3 networks and dairy cattle data.” https://doi.org/10.1214/22-AOAS1636SUPPA
[40] RAHMAN, S., KHARE, K., MICHAILIDIS, G., MARTINEZ, C. and CARULLA, J. (2023b). Supplement B to “Estimation of Gaussian directed acyclic graphs using partial ordering information with applications to DREAM3 networks and dairy cattle data.” https://doi.org/10.1214/22-AOAS1636SUPPB
[41] RAHMAN, S., KHARE, K., MICHAILIDIS, G., MARTINEZ, C. and CARULLA, J. (2023c). Supplement C to “Estimation of Gaussian directed acyclic graphs using partial ordering information with applications to DREAM3 networks and dairy cattle data.” https://doi.org/10.1214/22-AOAS1636SUPPC
[42] RAHMAN, S., KHARE, K., MICHAILIDIS, G., MARTÍNEZ, C. and CARULLA, J. (2023d). Supplement to “Estimation of Gaussian directed acyclic graphs using partial ordering information with applications to DREAM3 networks and dairy cattle data.” https://doi.org/10.1214/22-AOAS1636SUPPD
[43] RAMSEY, J. D. (2015). Scaling up greedy causal search for continuous variables Technical report, Center for Causal Discovery.
[44] RASKUTTI, G. and UHLER, C. (2018). Learning directed acyclic graph models based on sparsest permutations. Stat 7 e183. · Zbl 07851071 · doi:10.1002/sta4.183
[45] SCHEINES, R., SPIRTES, P., GLYMOUR, C., MEEK, C. and RICHARDSON, T. (1998). The tetrad project: Constraint based aids to causal model specification. Multivar. Behav. Res. 33 65-117.
[46] Shimizu, S., Hoyer, P. O., Hyvärinen, A. and Kerminen, A. (2006). A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7 2003-2030. · Zbl 1222.68304
[47] Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P. O. and Bollen, K. (2011). DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model. J. Mach. Learn. Res. 12 1225-1248. · Zbl 1280.68195
[48] SHOJAIE, A. and MICHAILIDIS, G. (2010). Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. Biometrika 97 519-538. · Zbl 1195.62090 · doi:10.1093/biomet/asq038
[49] SHOJAIE, A., JAUHIAINEN, A., KALLITSIS, M. and MICHAILIDIS, G. (2014a). Inferring regulatory networks by combining perturbation screens and steady state gene expression profiles. PLoS ONE 9 e82393.
[50] SHOJAIE, A., JAUHIAINEN, A., KALLITSIS, M. and MICHAILIDIS, G. (2014b). Inferring regulatory networks by combining perturbation screens and steady state gene expression profiles. PLoS ONE 9 e82393.
[51] SPIRTES, P., GLYMOUR, C. and SCHEINES, R. (2001). Causation, Prediction, and Search. MIT Press, Cambridge. · Zbl 0981.62001
[52] THORNLEY, J. H. M. and FRANCE, J. (2007). Mathematical Models in Agriculture. Quantitative Methods for Plant, Animal and Ecological Sciences, 2nd ed. Cromwell Press, Trowbridge, UK.
[53] TSAMARDINOS, I., BROWN, L. E. and ALIFERIS, C. F. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65 31-78. · Zbl 1470.68192
[54] Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109 475-494. · Zbl 1006.65062 · doi:10.1023/A:1017501703105
[55] TSOUMAKAS, G., KATAKIS, I. and VLAHAVAS, I. P. (2010). Mining multi-label data. In Data Mining and Knowledge Discovery Handbook (O. Maimon and L. Rokach, eds.) 667-685. Springer, Heidelberg, Germany.
[56] VAN DE GEER, S. and BÜHLMANN, P. (2013). \[{\ell_0}\]-penalized maximum likelihood for sparse directed acyclic graphs. Ann. Statist. 41 536-567. · Zbl 1267.62037 · doi:10.1214/13-AOS1085
[57] WANG, Y., SOLUS, L., YANG, K. and UHLER, C. (2017). Permutation-based causal inference algorithms with interventions. In Advances in Neural Information Processing Systems 5822-5831.
[58] YANG, K., KATCOFF, A. and UHLER, C. (2018). Characterizing and learning equivalence classes of causal dags under interventions. Proc. Mach. Learn. Res. 80 5537-5546.
[59] ZHOU, Q. (2011). Multi-domain sampling with applications to structural inference of Bayesian networks. J. Amer. Statist. Assoc. 106 1317-1330 · Zbl 1233.62050 · doi:10.1198/jasa.2011.ap10346
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.