×

An improved Bernoulli particle filter for single target tracking. (English) Zbl 1448.94066

Summary: Single target tracking is widely applied in the current surveillance systems. The Bernoulli filter can complete the task of single target tracking using available measurements. However, the existing Bernoulli filters have estimation bias during the whole tracking process. Therefore, we present an improved Bernoulli filter and its particle implementation in this paper. Employed the weight optimization strategy, the under-estimated number of target is corrected by enlarging the maximal measurement-updated weight of sampling particle. In addition, the track identification strategy is applied to optimize number of the required particles and extract the actual target. Combined with the unscented transform for the complicated dynamic models, the nonlinear motion state of maneuvering target is effectively estimated. Besides, we extend the proposed filter in unknown clutter environment and estimate the mean clutter rate, which has significant application meaning owing to avoiding the assumption of the given detection profile. Finally, the numerical simulations demonstrate the tracking advantages with the promising results in comparison to the standard Bernoulli filter.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
62M20 Inference from stochastic processes and prediction
Full Text: DOI

References:

[1] Blackman, S. S. (2004). Multiple hypotheses tracking for multiple target tracking. IEEE Aerospace Electronic Systems Magazine, 19(1), 5-18. · doi:10.1109/MAES.2004.1263228
[2] Blackman, S., & Popoli, R. (1999). Design and analysis of modern tracking systems. Boston: Aretch House. · Zbl 0933.93002
[3] Deniz, G., Ercan, E. K., & Ayşın, E. (2010). Modeling non-Gaussian time-varying vector autoregressive processes by particle filtering. Multidimensional Systems and Signal Processing, 21(1), 73-85. · Zbl 1298.93301 · doi:10.1007/s11045-009-0081-8
[4] Gning, A., Ristic, B., & Mihaylova, L. (2012). Bernoulli particle/box-particle filters for detection and tracking in the presence of triple measurement uncertainty. IEEE Transactions on Signal Processing, 60(2), 2138-2151. · Zbl 1393.94562 · doi:10.1109/TSP.2012.2184538
[5] Lin, L., Bar-shalom, Y., & Kirubarajan, T. (2006). Track labeling and PHD filter for multitarget tracking. IEEE Transactions on Aerospace and Electronic Systems, 42(3), 778-795. · doi:10.1109/TAES.2006.248213
[6] Luo, X. B., Fan, H. Q., Song, Z. Y., & Fu, Q. (2013). Bernoulli particle filter with observer altitude for maritime radiation source tracking in the presence of measurement uncertainty. Chinese Journal of Aeronautics, 26(6), 1459-1470. · doi:10.1016/j.cja.2013.10.001
[7] Mahler, R. (2007). Statistical multisource multitarget information fusion. Norwood: Aretch House. · Zbl 1126.68080
[8] Mahler, R. (2014). Advances in statistical multisource multitarget information fusion. Norwood: Aretch House. · Zbl 1291.68002
[9] Mahler, R., Vo, B. T., & Vo, B. N. (2011). CPHD filtering with unknown clutter rate and detection profile. IEEE Transactions on Signal Processing, 59(8), 98-104. · Zbl 1392.94637 · doi:10.1109/TSP.2011.2128316
[10] Praveen, B. C., Paul, D. T., & Marcus, R. F. (2014). Adapting the multi-Bernoulli filter to phased array observations using MUSIC as pseudo-likelihood. In 17th International conference on information fusion, July 7-10, Salamanca (pp. 1-8).
[11] Ristic, B. (2013). Particle filters for random set models. New York: Springer. · Zbl 1306.93002 · doi:10.1007/978-1-4614-6316-0
[12] Ristic, B., & Arulampalam, S. (2011). Bearings only tracking in clutter with observer control using the Bernoulli particle filter. In 2011 Australian control conference, Nov 10-11, Melbourne (pp. 487-492).
[13] Ristic, B., & Arulampalam, S. (2012). Bernoulli particle filter with observer control for bearings only tracking in clutter. IEEE Transactions on Aerospace and Electronic Systems, 48(7), 2405-2415. · doi:10.1109/TAES.2012.6237599
[14] Ristic, B., Beard, M., & Fantacci, C. (2016). An overview of particle methods for random finite set models. Information Fusion, 31, 110-126. · doi:10.1016/j.inffus.2016.02.004
[15] Uhlmann, J. (1995). Dynamic map building and localization: New theoretical foundations. Oxford: University of Oxford.
[16] Vo, B. T. (2008). Random finite sets in multi-object filtering. Perth: The University of Western Australia.
[17] Vo, B. T., See, C., Ma, N., & Ng, W. (2012). Multi-sensor joint detection and tracking with the Bernoulli filter. IEEE Transactions on Aerospace and Electronic Systems, 48(2), 1385-1402. · doi:10.1109/TAES.2012.6178069
[18] Vo, B. T., Vo, B. N., & Farina, A. (2013a). A tutorial on Bernoulli filters: Theory, implementation and applications. IEEE Transactions on Signal Processing, 61(13), 3406-3430. · Zbl 1393.94623 · doi:10.1109/TSP.2013.2259822
[19] Vo, B. T., Vo, B. N., Hoseinnezhad, R., & Mahler, R. (2013b). Robust multi-Bernoulli filtering. IEEE Transactions on Signal Processing, 7(3), 399-408.
[20] Wen, G. X., Liu, Y. J., Tong, S. C., & Li, X. L. (2011). Adaptive neural output feedback control of nonlinear discrete-time systems. Nonlinear Dynamics, 65(1-2), 65-75. · Zbl 1235.93110 · doi:10.1007/s11071-010-9874-4
[21] Xv, C. A., Liu, Y., Xiong, W., Song, R. H., & Li, T. M. (2015). A dual threshold particle PHD filter with unknown target birth intensity. Acta Aeronautica et Astronautica Sinica, 36(12), 3957-3969.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.