×

Dynamic control of V-belt continuously variable transmission-driven electric scooter using hybrid modified recurrent Legendre neural network control system. (English) Zbl 1345.93120

Summary: Because of unknown nonlinear and time-varying characteristics of V-belt continuously variable transmission (CVT)-driven electric scooter by using permanent magnet synchronous motor (PMSM) servo drive system, all gains tuning process for linear controller is a very time-consuming task. A hybrid modified recurrent Legendre neural network (NN) control system, which consists of an inspector control, a hybrid modified recurrent Legendre NN control and a recouped control with estimation law, is proposed for controlling the V-belt CVT-driven electric scooter under the occurrence of the nonlinear load disturbances and the variation of parameters to acquire better control performance. Moreover, the online parameters tuning method of the modified recurrent Legendre NN is based on Lyapunov stability theorem and gradient descent method. Furthermore, the two optimal learning rates of the hybrid modified recurrent Legendre NN control system are derived according to discrete Lyapunov function to enhance convergence speed. The proposed control scheme is capable of responding to system’s nonlinear and time-varying behaviors due to online learning ability. Finally, some experimental results are verified to show that the effectiveness of the proposed hybrid modified recurrent Legendre NN control system controlled the V-belt CVT-driven electric scooter by using PMSM servo drive system.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93C40 Adaptive control/observation systems
93C83 Control/observation systems involving computers (process control, etc.)
68T05 Learning and adaptive systems in artificial intelligence
37M05 Simulation of dynamical systems
37N35 Dynamical systems in control
Full Text: DOI

References:

[1] Novotny, D.W., Lipo, T.A.: Vector Control and Dynamics of AC Drives. Oxford University Press, New York (1996)
[2] Krishnan, R.: Electric Motor Drives: Modeling, Analysis, and Control. Prentice Hall, New Jersey (2001)
[3] Lin, F.J.: Real-time IP position controller design with torque feedforward control for PM synchronous motor. IEEE Trans. Ind. Electron. 4, 398-407 (1997)
[4] Tseng, C.Y., Chen, L.W., Lin, Y.T., Li, J.Y.: A hybrid dynamic simulation model for urban scooters with a mechanical-type CVT. In: IEEE International Conference on Automation and Logistics, pp. 519-519, Qingdao, China (2008)
[5] Guzzella, L., Schmid, A.M.: Feedback linearization of spark-ignition engines with continuously variable transmissions. IEEE Trans. Control Syst. Technol. 3, 54-58 (1995) · doi:10.1109/87.370710
[6] Kim, W., Vachtsevanos, G.: Fuzzy logic ratio control for a CVT hydraulic module. In: Proceedings of the IEEE Symposium on Intelligent Control, pp. 151-156, Rio, Greece (2000)
[7] Srivastava, N., Haque, I.: A review on belt and chain continuously variable transmissions (CVT): dynamics and control. Mech. Mach. Theory 44, 19-41 (2009) · Zbl 1350.70018 · doi:10.1016/j.mechmachtheory.2008.06.007
[8] Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. ASME 64, 759-768 (1942)
[9] Astrom, K.J., Hagglund, T.: PID Controller: Theory, Design, and Tuning. Instrument Society of America Research Triangle Park, North Carolina (1995)
[10] Hagglund, T., Astrom, K.J.: Revisiting the Ziegler-Nichols tuning rules for PI control. Asian J. Control 4, 364-380 (2002) · doi:10.1111/j.1934-6093.2002.tb00076.x
[11] Hagglund, T., Astrom, K.J.: Revisiting the Ziegler-Nichols tuning rules for PI control—part II: the frequency response method. Asian J. Control 6, 469-482 (2004) · doi:10.1111/j.1934-6093.2004.tb00368.x
[12] Wen, G.X., Liu, Y.J., Tong, S.C., Li, X.L.: Adaptive neural output feedback control of nonlinear discrete-time systems. Nonlinear Dyn. 65, 65-75 (2011) · Zbl 1235.93110 · doi:10.1007/s11071-010-9874-4
[13] Zou, A.M., Kumar, K.D.: Neural network-based adaptive output feedback formation control for multi-agent systems. Nonlinear Dyn. 70, 1283-1296 (2012) · Zbl 1268.93090 · doi:10.1007/s11071-012-0533-9
[14] Sun, G., Wang, D., Li, T., Peng, Z., Wang, H.: Single neural network approximation based adaptive control for a class of uncertain strict-feedback nonlinear systems. Nonlinear Dyn. 72, 175-184 (2013) · Zbl 1268.92014 · doi:10.1007/s11071-012-0701-y
[15] Wang, H., Chen, B., Lin, C.: Adaptive neural tracking control for a class of perturbed pure-feedback. Nonlinear Dyn. 72, 207-220 (2013) · Zbl 1268.92015 · doi:10.1007/s11071-012-0705-7
[16] Lakshmanan, S., Park, J.H., Rakkiyappan, R., Jung, H.Y.: State estimator for neural networks with sampled data using discontinuous Lyapunov functional approach. Nonlinear Dyn. 73, 509-520 (2013) · Zbl 1281.92008 · doi:10.1007/s11071-013-0805-z
[17] Pao, Y.H.: Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, Boston (1989) · Zbl 0748.68061
[18] Pao, Y.H., Philips, S.M.: The functional link net and learning optimal control. Neurocomputing 9, 149-164 (1995) · Zbl 0843.68103 · doi:10.1016/0925-2312(95)00066-F
[19] Patra, J.C., Pal, R.N., Chatterji, B.N., Panda, G.: Identification of nonlinear dynamic systems using functional link artificial neural networks. IEEE Trans. Syst. Man Cybern. B 29, 254-262 (1999) · doi:10.1109/3477.752797
[20] Dehuri, S., Cho, S.B.: A comprehensive survey on functional link neural networks and an adaptive PSOBP learning for CFLNN. Neural Comput. Appl. 19, 187-205 (2010) · doi:10.1007/s00521-009-0288-5
[21] Yang, S.S., Tseng, C.S.: An orthogonal neural network for function approximation. IEEE Trans. Syst. Man Cybern. B 26, 779-785 (1996) · doi:10.1109/3477.537319
[22] Patra, J.C., Chin, W.C., Meher, P.K., Chakraborty, G.: Legendre-FLANN-based nonlinear channel equalization in wireless communication systems. In: Proceedings of the IEEE International Conference on Systems. Man, Cybernetics, pp. 1826-1831 (2008)
[23] Patra, J.C., Meher, P.K., Chakraborty, G.: Nonlinear channel equalization for wireless communication systems using Legendre neural networks. Signal Process. 89, 2251-2262 (2009) · Zbl 1169.94318 · doi:10.1016/j.sigpro.2009.05.004
[24] Patra, J.C., Bornand, C.: Nonlinear dynamic system identification using Legendre neural network. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1-7 (2010) · Zbl 1268.92015
[25] Liu, F., Wang, J.: Fluctuation prediction of stock market index by Legendre neural network with random time strength function. Neurocomputing 83, 12-21 (2012) · doi:10.1016/j.neucom.2011.09.033
[26] Das, K.K., Satapathy, J.K.: Novel algorithms based on Legendre neural network for nonlinear active noise control with nonlinear secondary path. Int. J. Comput. Sci. Inf. Technol. 3, 5036-5039 (2012)
[27] Chow, T.W.S., Fang, Y.: A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics. IEEE Trans. Ind. Electron. 45, 151-161 (1998) · doi:10.1109/41.661316
[28] Brdys, M.A., Kulawski, G.J.: Dynamic neural controllers for induction motor. IEEE Trans. Neural Netw. 10, 340-355 (1999) · doi:10.1109/72.750564
[29] Li, X.D., Ho, J.K.L., Chow, T.W.S.: Approximation of dynamical time-variant systems by continuous-time recurrent neural networks. IEEE Trans. Circuits Syst. II 52, 656-660 (2005)
[30] Balasubramaniam, P., Lakshmanan, S., Jeeva Sathya Theesar, S.: State estimation for Markovian jumping recurrent neural networks with interval time-varying delays. Nonlinear Dyn. 60, 661-675 (2010) · Zbl 1194.62109 · doi:10.1007/s11071-009-9623-8
[31] Li, N., Hu, J., Hu, J., Li, L.: Exponential state estimation for delayed recurrent neural networks with sampled-data. Nonlinear Dyn. 69, 555-564 (2012) · Zbl 1253.93082 · doi:10.1007/s11071-011-0286-x
[32] Balasubramaniam, P., Vembarasan, V.: Synchronization of recurrent neural networks with mixed time-delays via output coupling with delayed feedback. Nonlinear Dyn. 70, 667-691 (2012) · Zbl 1267.93138
[33] Yoo, S.J., Park, J.B., Choi, Y.H.: Stable predictive control of Chaotic systems using self-recurrent wavelet neural network. Int. J. Autom. Control Syst. 3, 43-55 (2005)
[34] Lu, C.H.: Design and application of stable predictive controller using recurrent wavelet neural networks. IEEE Trans. Ind. Electron. 56, 3733-3742 (2009) · doi:10.1109/TIE.2009.2014304
[35] Lin, C.H.: Dynamic control for permanent magnet synchronous generator system using novel modified recurrent wavelet neural network. Nonlinear Dyn. 77, 1261-1284 (2014). doi:10.1007/s11071-014-1376-3 · doi:10.1007/s11071-014-1376-3
[36] Lin, C.H., Lin, C.P.: The hybrid RFNN control for a PMSM drive system using rotor flux estimator. Int. J. Power Electron. 4, 33-48 (2012) · doi:10.1504/IJPELEC.2012.044150
[37] Lin, C.H. Chiang, P.H., Tseng, C.S., Lin, Y.L., Lee, M.Y.: Hybrid recurrent fuzzy neural network control for permanent magnet synchronous motor applied in electric scooter. In: 6th International Power Electronics Conference, pp. 1371-1376 (2010)
[38] Lin, C.H.: Hybrid recurrent wavelet neural network control of PMSM servo-drive system for electric scooter. Int. J. Autom. Control Syst. 12, 177-187 (2014) · doi:10.1007/s12555-012-0190-2
[39] Lin, C.H., Lin, C.P.: Hybrid modified Elman NN controller design on permanent magnet synchronous motor driven electric scooter. Trans. Can. Soc. Mech. Eng. 37, 1127-1145 (2013)
[40] Tseng, C.Y., Lue, Y.F., Lin, Y.T., Siao, J.C., Tsai, C.H., Fu, L.M.: Dynamic simulation model for hybrid electric scooters. In: IEEE International Symposium on Industrial Electronics, pp. 1464-1469 (2009)
[41] Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991) · Zbl 0753.93036
[42] Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, New York (1995) · Zbl 1163.93350
[43] Ku, C.C., Lee, K.Y.: Diagonal recurrent neural networks for dynamic system control. IEEE Trans. Neural Netw. 6, 144-156 (1995) · doi:10.1109/72.363441
[44] Lin, C.H.: Recurrent modified Elman neural network control of PM synchronous generator system using wind turbine emulator of PM synchronous servo motor drive. Intl. J. Electr. Power Energy Syst. 52, 143-160 (2013) · doi:10.1016/j.ijepes.2013.03.021
[45] Lewis, F.L., Campos, J., Selmic, R.: Neuro-fuzzy control of industrial systems with actuator nonlinearities. SIAM Frontiers Appl. Math. 139-150 (2002). doi:10.1137/1.9780898717563 · Zbl 1010.93001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.