×

Iterative Brinkman penalization for remeshed vortex methods. (English) Zbl 1349.76083

Summary: We introduce an iterative Brinkman penalization method for the enforcement of the no-slip boundary condition in remeshed vortex methods. In the proposed method, the Brinkman penalization is applied iteratively only in the neighborhood of the body. This allows for using significantly larger time steps, than what is customary in the Brinkman penalization, thus reducing its computational cost while maintaining the capability of the method to handle complex geometries. We demonstrate the accuracy of our method by considering challenging benchmark problems such as flow past an impulsively started cylinder and normal to an impulsively started and accelerated flat plate. We find that the present method enhances significantly the accuracy of the Brinkman penalization technique for the simulations of highly unsteady flows past complex geometries.

MSC:

76D17 Viscous vortex flows
76M25 Other numerical methods (fluid mechanics) (MSC2010)
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
Full Text: DOI

References:

[1] Koumoutsakos, P.; Leonard, A., High-resolution simulation of the flow around an impulsively started cylinder using vortex methods, J. Fluid Mech., 296, 1-38 (1995) · Zbl 0849.76061
[2] Koumoutsakos, P.; Leonard, A.; Pépin, F., Boundary conditions for viscous vortex methods, J. Comput. Phys., 113, 1, 52-61 (1994) · Zbl 0808.76072
[3] Ploumhans, P.; Winckelmans, G. S.; Salmon, J. K.; Leonard, A.; Warren, M. S., Vortex methods for direct numerical simulation of three-dimensional bluff body flows: applications to the sphere at \(Re = 300, 500\) and 1000, J. Comput. Phys., 178, 427-463 (2002) · Zbl 1045.76030
[4] Ploumhans, P.; Daeninck, G.; Winckelmans, G., Simulation of three-dimensional bluff-body flows using the vortex particle and boundary element methods, Flow Turbul. Combust., 73, 117-131 (2004) · Zbl 1113.76422
[5] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73, 325-348 (1987) · Zbl 0629.65005
[6] Christiansen, J. P., Numerical simulation of hydrodynamics by the method of point vortices, J. Comput. Phys., 13, 363-379 (1973) · Zbl 0267.76009
[7] Morgenthal, G.; Walther, J. H., An immersed interface method for the vortex-in-cell algorithm, Comput. Struct., 85, 712-726 (2007)
[8] Walther, J. H., An influence matrix particle-particle-mesh algorithm with exact particle-particle correction, J. Comput. Phys., 184, 670-678 (2003) · Zbl 1063.78026
[9] Koumoutsakos, P., Inviscid axisymmetrization of an elliptical vortex ring, J. Comput. Phys., 138, 821-857 (1997) · Zbl 0902.76080
[10] Wee, D.; Ghoniem, A. F., Modified interpolation kernels for treating diffusion and remeshing in vortex methods, J. Comput. Phys., 213, 239-263 (2006) · Zbl 1088.76050
[11] Koumoutsakos, P.; Shiels, D., Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate, J. Fluid Mech., 328, 177-227 (1996) · Zbl 0890.76061
[12] Cottet, G.-H.; Koumoutsakos, P.; Salihi, M. L.O., Vortex methods with spatially varying cores, J. Comput. Phys., 162, 1, 164-185 (2000) · Zbl 1006.76070
[13] Angot, P.; Bruneau, C.-H.; Fabrie, P., A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., 81, 497-520 (1999) · Zbl 0921.76168
[14] Kevlahan, N. K.-R.; Ghidaglia, J.-M., Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization, Eur. J. Mech. B, Fluids, 20, 333-350 (2001) · Zbl 1020.76037
[15] Coquerelle, M.; Cottet, G.-H., A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, J. Comput. Phys., 227, 21, 9121-9137 (2008) · Zbl 1146.76038
[16] Rossinelli, D.; Bergdorf, M.; Cottet, G.-H.; Koumoutsakos, P., GPU accelerated simulations of bluff body flows using vortex particle methods, J. Comput. Phys., 229, 89, 3316-3333 (2010) · Zbl 1307.76066
[17] Rasmussen, J. T.; Cottet, G.-H.; Walther, J. H., A multiresolution remeshed vortex-in-cell algorithm using patches, J. Comput. Phys., 230, 17, 6742-6755 (2011) · Zbl 1408.76422
[18] Gazzola, M.; Chatelain, P.; van Rees, W. M.; Koumoutsakos, P., Simulations of single and multiple swimmers with non-divergence free deforming geometries, J. Comput. Phys., 230, 7093-7114 (2011) · Zbl 1328.76085
[19] Gazzola, M.; Hejazialhosseini, B.; Koumoutsakos, P., Reinforcement learning and wavelet adapted vortex methods for simulations of self-propelled swimmers, SIAM J. Sci. Comput. (2014), in press · Zbl 1298.76248
[20] Hejlesen, M. M.; Rasmussen, J. T.; Chatelain, P.; Walther, J. H., A high order solver for the unbounded Poisson equation, J. Comput. Phys., 252, 458-467 (2013) · Zbl 1349.65687
[21] Hockney, R. W.; Eastwood, J. W., Computer Simulation Using Particles (1988), Institute of Physics Publishing: Institute of Physics Publishing Bristol, PA, USA · Zbl 0662.76002
[22] Chatelain, P.; Koumoutsakos, P., A Fourier-based elliptic solver for vortical flows with periodic and unbounded directions, J. Comput. Phys., 229, 2425-2431 (2010) · Zbl 1423.76332
[23] Wu, J. C., Theory for aerodynamics force and moments in viscous flows, AIAA J., 19, 4, 432-441 (1981) · Zbl 0461.76041
[24] Saffman, P. G., Vortex Dynamics (1992), Cambridge University Press · Zbl 0777.76004
[25] Walther, J. H., Discrete vortex method for two-dimensional flow past bodies of arbitrary shape undergoing prescribed rotary and translational motion (September 1994), Department of Fluid Mechanics, Technical University of Denmark, unpublished
[26] Walther, J. H.; Larsen, A., Two dimensional discrete vortex method for application to bluff body aerodynamics, J. Wind Eng. Ind. Aerodyn., 67-68, 183-193 (1997)
[27] Rasmussen, J. T.; Hejlesen, M. M.; Larsen, A.; Walther, J. H., Discrete vortex method simulations of the aerodynamic admittance in bridge aerodynamics, J. Wind Eng. Ind. Aerodyn., 98, 754-766 (2010)
[28] Wang, C.; Eldredge, J. D., Low-order phenomenological modeling of leading-edge vortex formation, Theor. Comput. Fluid Dyn., 27, 577-598 (2013)
[29] Vasilyev, O. V.; Kevlahan, N. K.-R., Hybrid wavelet collocation-Brinkman penalization method for complex geometry flows, Int. J. Numer. Methods Fluids, 40, 531-538 (2002) · Zbl 1019.76033
[30] Schneider, K.; Farge, M., Adaptive wavelet simulation of a flow around an impulsively started cylinder using penalization, Appl. Comput. Harmon. Anal., 12, 374-380 (2002) · Zbl 1119.76364
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.