×

Iterative Brinkman penalization for simulation of impulsively started flow past a sphere and a circular disc. (English) Zbl 1375.76037

Summary: We present a Brinkman penalization method for three-dimensional (3D) flows using particle vortex methods, improving the existing technique by an iterative process. We perform simulations to study the impulsively started flow past a sphere at \(\operatorname{Re} = 1000\) and normal to a circular disc at \(\operatorname{Re} = 500\). The simulation results obtained for the flow past a sphere are found in qualitative good agreement with previously published results obtained using respectively a 3D vortex penalization method and a 3D vortex method combined with an accurate boundary element method. From the results obtained for the flow normal to a circular disc it is found that the iterative method enables the use of a time step that is one order of magnitude larger than required by the standard non-iterative Brinkman penalization method.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76D17 Viscous vortex flows
76M25 Other numerical methods (fluid mechanics) (MSC2010)

References:

[1] Peskin, C., Flow patterns around heart valves: a numerical study, J. Comput. Phys., 10, 252-271 (1972) · Zbl 0244.92002
[2] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105, 354-366 (1993) · Zbl 0768.76049
[3] Angot, P.; Bruneau, C.-H.; Fabrie, P., A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., 81, 497-520 (1999) · Zbl 0921.76168
[4] Khadra, K.; Angot, P.; Parneix, S.; Caltagirone, J. P., Fictitious domain approach for numerical modelling of Navier-Stokes equations, Int. J. Numer. Methods Fluids, 34, 651-684 (2000) · Zbl 1032.76041
[5] Kevlahan, N. K.-R.; Ghidaglia, J.-M., Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization, Eur. J. Mech. B, Fluids, 20, 333-350 (2001) · Zbl 1020.76037
[6] Rasmussen, J. T.; Hejlesen, M. M.; Larsen, A.; Walther, J. H., Discrete vortex method simulations of the aerodynamic admittance in bridge aerodynamics, J. Wind Eng. Ind. Aerodyn., 98, 754-766 (2010)
[7] Hejlesen, M. M.; Koumoutsakos, P.; Leonard, A.; Walther, J. H., Iterative Brinkman penalization for remeshed vortex methods, J. Comput. Phys., 280, 547-562 (2015) · Zbl 1349.76083
[8] Gazzola, M.; Chatelain, P.; van Rees, W. M.; Koumoutsakos, P., Simulations of single and multiple swimmers with non-divergence free deforming geometries, J. Comput. Phys., 230, 7093-7114 (2011) · Zbl 1328.76085
[9] Coquerelle, M.; Cottet, G.-H., A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, J. Comput. Phys., 227, 21, 9121-9137 (2008) · Zbl 1146.76038
[10] Rossinelli, D.; Bergdorf, M.; Cottet, G.-H.; Koumoutsakos, P., GPU accelerated simulations of bluff body flows using vortex particle methods, J. Comput. Phys., 229, 89, 3316-3333 (2010) · Zbl 1307.76066
[11] El Ossmani, M.; Poncet, P., Efficiency of multiscale hybrid grid-particle vortex methods, Multiscale Model. Simul., 8, 5, 1671-1690 (2010) · Zbl 1208.76120
[12] Mimeau, C.; Gallizio, F.; Cottet, G. H.; Mortazavi, I., Vortex penalization method for bluff body flows, Int. J. Numer. Methods Fluids, 79, 2, 55-83 (2015)
[13] Mimeau, C.; Cottet, G. H.; Mortazavi, I., Direct numerical simulations of three-dimensional flows past obstacles with a vortex penalization method, Comput. Fluids, 136, 331-347 (2016) · Zbl 1390.76597
[14] Ploumhans, P.; Winckelmans, G. S.; Salmon, J. K.; Leonard, A.; Warren, M. S., Vortex methods for direct numerical simulation of three-dimensional bluff body flows: applications to the sphere at \(Re = 300, 500\) and 1000, J. Comput. Phys., 178, 427-463 (2002) · Zbl 1045.76030
[15] Monaghan, J. J., Extrapolating B splines for interpolation, J. Comput. Phys., 60, 2, 253-262 (1985) · Zbl 0588.41005
[16] Bergdorf, M.; Koumoutsakos, P., A Lagrangian particle-wavelet method, Multiscale Model. Simul., 5, 3, 980-995 (2006) · Zbl 1122.65085
[17] van Rees, W. M.; Leonard, A.; Pullin, D. I.; Koumoutsakos, P., A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers, J. Comput. Phys., 230, 2794-2805 (2011) · Zbl 1316.76066
[18] Hejlesen, M. M.; Rasmussen, J. T.; Chatelain, P.; Walther, J. H., A high order solver for the unbounded Poisson equation, J. Comput. Phys., 252, 458-467 (2013) · Zbl 1349.65687
[19] Hejlesen, M. M.; Rasmussen Johannes, T.; Chatelain, P.; Walther, J. H., High order Poisson solver for unbounded flows, Proc. IUTAM, 18, 56-65 (2015)
[20] Hejlesen, M. M., A High Order Regularisation Method for Solving the Poisson Equation and Selected Applications using Vortex Methods (February 2016), Technical University of Denmark, PhD thesis
[21] Hockney, R. W.; Eastwood, J. W., Computer Simulation Using Particles (1988), Institute of Physics Publishing: Institute of Physics Publishing Bristol, PA, USA · Zbl 0662.76002
[22] Hockney, R. W., The potential calculation and some applications, Methods Comput. Phys., 9, 136-210 (1970)
[23] Eastwood, J. W.; Brownrigg, D. R.K., Remarks on the solution of Poisson’s equation for isolated systems, J. Comput. Phys., 32, 24-38 (1979) · Zbl 0407.65050
[24] Koumoutsakos, P.; Leonard, A., High-resolution simulation of the flow around an impulsively started cylinder using vortex methods, J. Fluid Mech., 296, 1-38 (1995) · Zbl 0849.76061
[25] Koumoutsakos, P., Inviscid axisymmetrization of an elliptical vortex ring, J. Comput. Phys., 138, 821-857 (1997) · Zbl 0902.76080
[26] Chatelain, P.; Curioni, A.; Bergdorf, M.; Rossinelli, D.; Andreoni, W.; Koumoutsakos, P., Billion vortex particle direct numerical simulations of aircraft wakes, Comput. Methods Appl. Mech. Eng., 197, 1296-1304 (2008) · Zbl 1159.76368
[27] Rasmussen, J. T.; Cottet, G.-H.; Walther, J. H., A multiresolution remeshed vortex-in-cell algorithm using patches, J. Comput. Phys., 230, 17, 6742-6755 (2011) · Zbl 1408.76422
[28] Wu, J. C., A Theory for Aerodynamic Forces and Moments (September 1978), Georgia Institute of Technology, Technical report
[29] Noca, F.; Shiels, D.; Jeon, D., Measuring instantaneous fluid dynamic forces on bodies, using only velocity fields and their derivatives, J. Fluids Struct., 11, 345-350 (1997), special brief note
[30] Noca, F.; Shiels, D.; Jeon, D., A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies using only velocity fields and their derivatives, J. Fluids Struct., 13, 551-578 (1999)
[31] Saffman, P. G., Vortex Dynamics (1992), Cambridge University Press · Zbl 0777.76004
[32] Batchelor, G. K., An Introduction To Fluid Dynamics (1967), Cambridge University Press · Zbl 0152.44402
[33] Jeong, J.; Hussain, F., On the identification of a vortex, J. Fluid Mech., 285, 69-94 (1995) · Zbl 0847.76007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.