×

Hybrid grid-particle methods and penalization: a Sherman-Morrison-Woodbury approach to compute 3D viscous flows using FFT. (English) Zbl 1349.76592

Summary: Particle methods are very convenient to compute transport equations in fluid mechanics as their computational cost is linear and they are not limited by convection stability conditions. To achieve large 3D computations the method must be coupled to efficient algorithms for velocity computations, including a good treatment of non-homogeneities and complex moving geometries. The Penalization method enables to consider moving bodies interaction by adding a term in the conservation of momentum equation. This work introduces a new computational algorithm to solve implicitly in the same step the Penalization term and the Laplace operators, since explicit computations are limited by stability issues, especially at low Reynolds number. This computational algorithm is based on the Sherman-Morrison-Woodbury formula coupled to a GMRES iterative method to reduce the computations to a sequence of Poisson problems: this allows to formulate a penalized Poisson equation as a large perturbation of a standard Poisson, by means of algebraic relations. A direct consequence is the possibility to use fast solvers based on Fast Fourier Transforms for this problem with good efficiency from both the computational and the memory consumption point of views, since these solvers are recursive and they do not perform any matrix assembling. The resulting fluid mechanics computations are very fast and they consume a small amount of memory, compared to a reference solver or a linear system resolution. The present applications focus mainly on a coupling between transport equation and 3D Stokes equations, for studying biological organisms motion in a highly viscous flows with variable viscosity.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N75 Probabilistic methods, particle methods, etc. for boundary value problems involving PDEs
65T50 Numerical methods for discrete and fast Fourier transforms
76D07 Stokes and related (Oseen, etc.) flows
82C70 Transport processes in time-dependent statistical mechanics
92C35 Physiological flow

Software:

MUDPACK; FFTW; MUDPACK-2
Full Text: DOI

References:

[1] Adams, J. C., MudPack: multigrid portable Fortran software for the efficient solution of linear elliptic partial differential equations, Appl. Math. Comput., 34, 2, Part 2, 113-146 (November 1989) · Zbl 0685.65091
[2] Anderson, C.; Greengard, C., On vortex methods, SIAM J. Numer. Anal., 22, 3, 413-440 (June 1985) · Zbl 0578.65121
[3] Angot, P.; Bruneau, C.-H.; Fabrie, P., A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., 81, 4, 497-520 (1999) · Zbl 0921.76168
[4] Beale, J. T.; Majda, A., Rates of convergence for viscous splitting of the Navier-Stokes equations, Math. Comput., 37, 156, 243-259 (October 1981) · Zbl 0518.76027
[5] Bergdorf, M.; Koumoutsakos, P., A Lagrangian particle-wavelet method, Multiscale Model. Simul., 5, 3, 980-995 (January 2006) · Zbl 1122.65085
[6] Chatelain, P.; Curioni, A.; Bergdorf, M.; Rossinelli, D.; Andreoni, W.; Koumoutsakos, P., Billion vortex particle direct numerical simulations of aircraft wakes, Comput. Methods Appl. Mech. Eng., 197, 13-16, 1296-1304 (2008) · Zbl 1159.76368
[7] Chatelain, P.; Koumoutsakos, P., A Fourier-based elliptic solver for vortical flows with periodic and unbounded directions, J. Comput. Phys., 229, 7, 2425-2431 (April 2010) · Zbl 1423.76332
[8] Chatelin, R., Méthodes numériques pour l’écoulement de Stokes 3D: fluides à viscosité variable en géométrie complexe mobile; application aux fluides biologiques (2013), Université Toulouse 3 Paul Sabatier, PhD thesis
[9] Chatelin, R.; Poncet, P., A hybrid grid-particle method for moving bodies in 3D Stokes flow with variable viscosity, SIAM J. Sci. Comput., 35, 4, B925-B949 (August 2013) · Zbl 1362.65085
[10] Chatelin, R.; Poncet, P.; Didier, A.; Murris-Espin, M.; Anne-Archard, D.; Thiriet, M., Mucus and ciliated cells of human lung: splitting strategies for particle methods and 3d Stokes flows, (IUTAM Symposium on Particle Methods in Fluid Mechanics (2012))
[11] Chorin, A. J., Numerical solution of the Navier-Stokes equations, Math. Comput., 22, 104, 745-762 (October 1968) · Zbl 0198.50103
[12] Cocle, R.; Winckelmans, G.; Daeninck, G., Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations, J. Comput. Phys., 227, 21, 9091-9120 (November 2008) · Zbl 1391.76520
[13] Coquerelle, M.; Cottet, G.-H., A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies, J. Comput. Phys., 227, 21, 9121-9137 (November 2008) · Zbl 1146.76038
[14] Cottet, G.-H.; Koumoutsakos, P., Vortex Methods: Theory and Practice (March 2000), Cambridge University Press
[15] Couet, B.; Buneman, O.; Leonard, A., Simulation of three-dimensional incompressible flows with a vortex-in-cell method, J. Comput. Phys., 39, 2, 305-328 (February 1981) · Zbl 0471.76049
[16] Cunha, R. D.; Hopkins, T., A parallel implementation of the restarted GMRES iterative algorithm for nonsymmetric systems of linear equations, Adv. Comput. Math., 2, 3, 261-277 (April 1994) · Zbl 0829.65035
[17] Decoene, A.; Martin, S.; Maury, B., Microscopic modelling of active bacterial suspensions, Math. Model. Nat. Phenom., 6, 05, 98-129 (2011) · Zbl 1229.70023
[18] El Ossmani, M.; Poncet, P., Efficiency of multiscale hybrid grid-particle vortex methods, Multiscale Model. Simul., 8, 5, 1671-1690 (January 2010) · Zbl 1208.76120
[19] Erhel, J., A parallel GMRES version for general sparse matrices, Electron. Trans. Numer. Anal., 3, 12, 160-176 (1995) · Zbl 0860.65021
[20] Fauci, L. J.; Dillon, R., Biofluidmechanics of reproduction, Annu. Rev. Fluid Mech., 38, 1, 371-394 (2006) · Zbl 1100.76071
[21] Frigo, M.; Johnson, S. G., The design and implementation of FFTW3, Proc. IEEE, 93, 2, 216-231 (2005)
[22] Gaffney, E. A.; Gadêlha, H.; Smith, D. J.; Blake, J. R.; Kirkman-Brown, J. C., Mammalian sperm motility: observation and theory, Annu. Rev. Fluid Mech., 43, 1, 501-528 (2011) · Zbl 1299.76318
[23] Gazzola, M.; Chatelain, P.; Van Rees, W. M.; Koumoutsakos, P., Simulations of single and multiple swimmers with non-divergence free deforming geometries, J. Comput. Phys., 230, 19, 7093-7114 (August 2011) · Zbl 1328.76085
[24] Guermond, J. L.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng., 195, 6011-6045 (September 2006) · Zbl 1122.76072
[25] Hager, W. W., Updating the inverse of a matrix, SIAM Rev., 31, 2, 221-239 (June 1989) · Zbl 0671.65018
[26] Janela, J.; Lefebvre, A.; Maury, B., A penalty method for the simulation of fluid-rigid body interaction, (ESAIM. Proceedings, vol. 14 (2005)), 115-123 · Zbl 1079.76043
[27] Lauga, E.; Powers, T. R., The hydrodynamics of swimming microorganisms, Rep. Prog. Phys., 72, 9, 096601.1-096601.36 (September 2009)
[28] Magni, A.; Cottet, G.-H., Accurate, non-oscillatory, remeshing schemes for particle methods, J. Comput. Phys., 231, 1, 152-172 (January 2012) · Zbl 1403.76167
[29] Monaghan, J. J., Extrapolating B splines for interpolation, J. Comput. Phys., 60, 2, 253-262 (September 1985) · Zbl 0588.41005
[30] Ploumhans, P.; Winckelmans, G. S., Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry, J. Comput. Phys., 165, 2, 354-406 (December 2000) · Zbl 1006.76068
[31] Poncet, P., Topological aspects of three-dimensional wakes behind rotary oscillating cylinders, J. Fluid Mech., 517, 27-53 (2004) · Zbl 1131.76314
[32] Poncet, P., Analysis of an immersed boundary method for three-dimensional flows in vorticity formulation, J. Comput. Phys., 228, 19, 7268-7288 (October 2009) · Zbl 1400.76059
[33] Purcell, E. M., Life at low Reynolds number, Am. J. Phys., 45, 1, 3-11 (1977)
[34] Rasmussen, J. T.; Cottet, G.-H.; Walther, J. H., A multiresolution remeshed vortex-in-cell algorithm using patches, J. Comput. Phys., 230, 17, 6742-6755 (July 2011) · Zbl 1408.76422
[35] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual method for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[36] Swarztrauber, P.; Sweet, R. A., Efficient FORTRAN subprograms for the solution of elliptic partial differential equations (abstract), SIGNUM Newsl., 10, 4 (December 1975)
[37] Sweet, R. A., A parallel and vector variant of the cyclic reduction algorithm, SIAM J. Sci. Stat. Comput., 9, 4, 761-765 (July 1988) · Zbl 0651.65019
[38] Tezduyar, T. E., Finite element methods for flow problems with moving boundaries and interfaces, Arch. Comput. Methods Eng., 8, 2, 83-130 (June 2001) · Zbl 1039.76037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.