×

Numerical solution and stability analysis for a class of nonlinear differential equations. (English) Zbl 1528.65049

Summary: In this paper, one-dimensional Burgers equation and one-dimensional Laval nozzle flow Euler equation are numerically solved, and the stability of the numerical solutions is analyzed theoretically. In order to satisfy the stability of the numerical solution, the explicit MacCormack scheme is used to obtain the stable solution of the computer numerical simulation. In addition, the numerical and analytical solutions of the Euler equation for one-dimensional Laval nozzle flow are compared, and the results are completely consistent, which verifies the correctness of the numerical solution.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
76M20 Finite difference methods applied to problems in fluid mechanics
35Q31 Euler equations
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Choudhary, MK; Karki, KC; Patankar, SV, Mathematical modeling of heat transfer, condensation, and cappilary flow in porous insulation on a cold pipe, Int. J. Heat Mass Transfer, 47, 5629-5638 (2004) · Zbl 1121.76486 · doi:10.1016/j.ijheatmasstransfer.2004.07.016
[2] Gibsona, PW; Charmchib, M., Modeling convection/diffusion processes in porous textiles with inclusion of humidity-dependent air permeability, Int. Commun. Heat Mass Transfer, 24, 709-724 (1997) · doi:10.1016/S0735-1933(97)00056-0
[3] Huang, CM; Vandewalle, S., Unconditionally stable difference methods for delay partial differential equations, Numer. Math., 3, 122, 579-601 (2012) · Zbl 1272.65066 · doi:10.1007/s00211-012-0467-7
[4] Gess, B.; Liu, W.; Schenke, A., Random attractors for locally monotone stochastic partial differential equations, J. Diff. Eq., 269, 3414-3455 (2020) · Zbl 1507.37103 · doi:10.1016/j.jde.2020.03.002
[5] Zhou, H., Huang, D.Q., Wang, W.S.: Some new difference inequalities and an application To discrete-time control systems. J. Appl. Mathematics: 214609 (2012) · Zbl 1263.93143
[6] Moutsinga, O., Burgers’ equation and the sticky particles model, J. Math. Phys., 6, 53, 063709 (2012) · Zbl 1290.35204 · doi:10.1063/1.4729540
[7] Adams, D.M.: Application of the hydraulic analogy to axisymmetric nonideal compressible gas systems. J. Spacecr. Rockets doi:10.2514/3.28866 (2015)
[8] Elazar, M., Fleurov, V., BarAd, S.: An all-optical event horizon in an optical analogue of a laval nozzle. Analogue Gravity Phenomenology, doi:10.1007/978-3-319-00266-8-12 (2013)
[9] Marino, F., Maitland, C., Vocke, D.: Emergent geometries and nonlinear-wave dynamics in photon fluids. Sci. Rep. doi:10.1038/srep23282 (2016)
[10] Burgers, JMA, mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1, 171-199 (1984) · doi:10.1016/S0065-2156(08)70100-5
[11] Eymard, R.; Fuhrmann, J.; Grtner, K., A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems, Numer. Math., 102, 463-495 (2006) · Zbl 1116.65101 · doi:10.1007/s00211-005-0659-5
[12] Wang, J.Y.: Further analysis on stability of delayed neural networks via inequality technique. J. Inequal. Appl. doi:10.1186/1029-242X-2011-103 (2011) · Zbl 1273.34080
[13] Hoff, D., Stability and convergence of finite difference methods for systems of nonlinear reactiondiffusion equations, SIAM J. Numer. Anal., 15, 1161-1177 (1978) · Zbl 0411.76062 · doi:10.1137/0715077
[14] Aksan, ENA, numerical solution of Burgers equation by finite element method constructed on the method of discretization in time, Appl. Math. Comput, 170, 895-904 (2005) · Zbl 1103.65104
[15] Hesameddini, E.; Gholampour, R., Soliton and numerical solutions of the Burgers equation and comparing them, Int. J. Math. Anal., 4, 2547-2564 (2010) · Zbl 1225.65115
[16] Liao, W.; Zhu, J., Efficient and accurate finite difference schemes for one-dimensional Burgers equation, Int. J. Comput. Math., 88, 12, 2575-2590 (2011) · Zbl 1252.65141 · doi:10.1080/00207160.2010.548519
[17] Rodionov, A.V.: Artificial viscosity to cure the carbuncle phenomenon: the three-dimensional case. J. Comput. Phys. doi:10.1016/j.jcp.2018.02.001 (2018) · Zbl 1391.76437
[18] Yu, WL; Feng, YD; Zhou, H.; Cao, SZ; Zhang, XY, Fluid simulation analysis and optimization of micro Laval nozzle, Vacuum and Low Temperature, 24, 4, 246-250 (2018)
[19] Rodionov, A.V.: Artificial viscosity in godunov-type schemes to cure the carbuncle phenomenon. J. Comput. Phys. doi:10.1016/j.jcp.2017.05.024 (2017) · Zbl 1378.76059
[20] Wood, WL, An exact solution for Burgers’s equation, Commun. Numer. Methods Eng., 22, 797-798 (2006) · Zbl 1370.35241 · doi:10.1002/cnm.850
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.