×

A novel decomposition as a fast finite difference method for second derivatives. (English) Zbl 1506.65183

Summary: In this paper, we propose a fast solver for the linear system-induced from applying the finite difference method. For this purpose, we provide a new decomposition of the matrix consisting of a second-order central finite difference matrix and a small condition number matrix. We analyze the fourth-order finite difference matrix using this decomposition and the good properties of the two decomposed matrices. In addition, we compare the upper bounds of the condition numbers of the three matrices, which are closely related to the number of iterations. In terms of computational cost, we show the superiority of the proposed solver by solving the one-dimensional Poisson’s equations. We also demonstrated the efficiency of using the proposed solver by numerically observing the factors, such as condition number and spectral radius.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65F35 Numerical computation of matrix norms, conditioning, scaling
Full Text: DOI

References:

[1] Dafa-Alla, FAA; Hwang, K.; Ahn, S.; Kim, P., A new finite difference representation for Poisson’s equation on \({\mathbb{R} }^3\) from a contour integral, Appl. Math. Comput., 217, 3624-3634 (2010) · Zbl 1207.65124
[2] Eiermann, M.; Ernst, OG, Geometric aspects of the theory of Krylov subspace methods, Acta Numer., 10, 251-312 (2001) · Zbl 1105.65328 · doi:10.1017/S0962492901000046
[3] Fornberg, B., A Practical Guide to Psedospectral Methods (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0844.65084 · doi:10.1017/CBO9780511626357
[4] Horn, RA; Johnson, CR, Matrix Analysis (2012), Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9781139020411
[5] Hoskins, WD; Ponzo, PJ, Some properties of a class of band matrices, Math. Comput., 26, 393-400 (1972) · Zbl 0248.15008 · doi:10.1090/S0025-5718-1972-0303703-3
[6] Jiwari, R., A hybrid numerical scheme for the numerical solution of the Burgers’ equation, Comput. Phys. Commun., 188, 59-67 (2015) · Zbl 1344.65082 · doi:10.1016/j.cpc.2014.11.004
[7] Kalaba, RE; Spingarn, K., A criterion for the convergence of the Gauss-Seidel method, Appl. Math. Comput., 4, 359-367 (1978) · Zbl 0407.65013
[8] Kim, S.; Ahn, S.; Kim, P., Local boundary element based a new finite difference representation for Poisson equations, Appl. Math, Comput., 217, 5186-5198 (2011) · Zbl 1215.65165
[9] Liao, W.; Zhu, J., Efficient and accurate finite difference schemes for solving one-dimensional Burgers’ equation, Int. J. Comput. Math., 88, 2575-2590 (2011) · Zbl 1252.65141 · doi:10.1080/00207160.2010.548519
[10] Liesen, J.; Tichy, P., Convergence analysis of Krylov subspace methods, GAMM-Mitteilungen, 27, 153-173 (2004) · Zbl 1071.65041 · doi:10.1002/gamm.201490008
[11] Saad, Y., Krylove subspace methods for solving large unsymmetric linear systems, Math. Comput., 37, 105-126 (1981) · Zbl 0474.65019 · doi:10.1090/S0025-5718-1981-0616364-6
[12] Strang, G., Linear Algebra and Its Applications (2006), Pacific Grove: Thomson Brooks/Cole, Pacific Grove · Zbl 1329.15004
[13] Usmani, RA, Inversion of a tridiagonal Jacobi matrix, Linear Algebra Appl., 212, 213, 413-414 (1994) · Zbl 0813.15001 · doi:10.1016/0024-3795(94)90414-6
[14] Varah, JM, A lower bound for the smallest singular value of a matrix, Linear Algebra Appl., 11, 3-5 (1975) · Zbl 0312.65028 · doi:10.1016/0024-3795(75)90112-3
[15] Varga, RS, Matrix Iterative Analysis (1999), Berlin: Springer, Berlin
[16] Vulanović, R., Stability of a finite-difference discretization of a singular perturbation problem, Linear Algebra Appl., 436, 326-334 (2012) · Zbl 1232.65112 · doi:10.1016/j.laa.2011.03.045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.