×

Parallel computational structure of noisy quantum circuits simulation. (English) Zbl 1396.81066

Summary: We present the detailed description of parallel computational structure of quantum circuits modeling. The deep theoretical and experimental analysis of corresponding algorithms and relations of their features to the nature of quantum computations are considered. Special attention is paid to the extension of modeling to the case of noisy circuits, which appear in realistic quantum computers.

MSC:

81P68 Quantum computation
68Q12 Quantum algorithms and complexity in the theory of computing
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
68U20 Simulation (MSC2010)
81S22 Open systems, reduced dynamics, master equations, decoherence
Full Text: DOI

References:

[1] Grover, L. K., A fast quantum mechanical algorithm for database search, 212-219, (1996), New York · Zbl 0922.68044
[2] Shor, P. W., Algorithms for quantum computation: discrete logarithms and factoring, 124-134, (1994), Los Alamos · doi:10.1109/SFCS.1994.365700
[3] Zalka, C., Efficient simulation of quantum systems by quantum computers, Fortschr. Phys., 46, 877-879, (1998) · doi:10.1002/(SICI)1521-3978(199811)46:6/8<877::AID-PROP877>3.0.CO;2-A
[4] Lloyd, S., Universal quantum simulators, Science (Washington, DC, U. S.), 273, 1073-1078, (1996) · Zbl 1226.81059 · doi:10.1126/science.273.5278.1073
[5] S. Wiesner, “Simulations of many-body quantum systems by a quantum computer,” quant-ph/9603028 (1996).
[6] Farhi, E.; Goldstone, J.; Gutmann, S.; Lapan, J.; Lundgren, A.; Preda, D., A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science (Washington, DC, U. S.), 292, 472-475, (2001) · Zbl 1226.81046 · doi:10.1126/science.1057726
[7] Raussendorf, R.; Briegel, H. J., A one-way quantum computer, Phys. Rev. Lett., 86, 5188, (2001) · Zbl 1152.81803 · doi:10.1103/PhysRevLett.86.5188
[8] Knill, E.; Laflamme, R., Power of one bit of quantum information, Phys. Rev. Lett., 81, 5672, (1998) · Zbl 1032.68080 · doi:10.1103/PhysRevLett.81.5672
[9] M. A. Nielsen and I. Chuang, Quantum Computation andQuantum Information (Cambridge Univ. Press, Cambridge, 2002).
[10] Bogdanov, Y. I.; Bantysh, B. I.; Chernyavskiy, A. Y.; Lukichev, V. F.; Orlikovsky, A. A., The study of amplitude and phase relaxation impact on the quality of quantum information technologies, 94401i-94401i, (2014), CA
[11] Glendinning, I.; ömer, B., Parallelization of the QC-lib quantum computer simulator library, 461-468, (2003), New York · Zbl 1128.68344
[12] Gao, X.; Nielsen, E.; Muller, R. P.; Young, R. W.; Salinger, A. G.; Bishop, N.; Carroll, M., The QCAD framework for quantum device modeling, 1-4, (2012), Los Alamos
[13] Green, A. S.; Lumsdaine, P. L.; Ross, N. J.; Selinger, P.; Valiron, B., Quipper: a scalable quantum programming language, ACM SIGPLAN Not., 48, 333-342, (2013) · Zbl 1406.68013 · doi:10.1145/2499370.2462177
[14] Viamontes, G. F.; Markov, I. L.; Hayes, J. P., High-performance quidd-based simulation of quantum circuits, Proceedings of the Conference on Design, Automation and Test in Europe, 2, 21354, (2004)
[15] Tabakin, F.; Juliá-Dí az, B., QCMPI: a parallel environment for quantum computing, Comput. Phys. Commun., 180, 948-964, (2009) · Zbl 1198.81023 · doi:10.1016/j.cpc.2008.11.021
[16] Tabakin, F., Qdensity/qcwave: a Mathematica quantum computer simulation update, Comput. Phys. Commun., 201, 171-172, (2016) · Zbl 1348.81027 · doi:10.1016/j.cpc.2015.12.015
[17] T. Häner and D. S. Steiger, “0.5 petabyte simulation of a 45-qubit quantum circuit,” arXiv:1704.01127 (2017). · doi:10.1145/3126908.3126947
[18] Voevodin, V.; Antonov, A.; Dongarra, J., Algowiki: an open encyclopedia of parallel algorithmic features, Supercomput. Front. Innov., 2, 4-18, (2015)
[19] Vetter, J. S.; Sadovnichy, V.; Tikhonravov, A.; Voevodin, V.; Opanasenko, V., Lomonosov: supercomputing at Moscow state university, (2013), Boca Raton
[20] Single-qubit transform of a state vector on AlgoWiki. http://algowiki-project.org/en/Singlequbit_transform_of_a_state_vector.
[21] Antonov, A.; Voevodin, V.; Voevodin, V.; Teplov, A., A study of the dynamic characteristics of software implementation as an essential part for a universal description of algorithm properties, 359-363, (2016), Los Alamos
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.