×

Self-protected quantum algorithms based on quantum state tomography. (English) Zbl 1200.81032

Summary: Only a few classes of quantum algorithms are known which provide a speed-up over classical algorithms. However, these and any new quantum algorithms provide important motivation for the development of quantum computers. In this article new quantum algorithms are given which are based on quantum state tomography. These include an algorithm for the calculation of several quantum mechanical expectation values and an algorithm for the determination of polynomial factors. These quantum algorithms are important in their own right. However, it is remarkable that these quantum algorithms are immune to a large class of errors. We describe these algorithms and provide conditions for immunity.

MSC:

81P68 Quantum computation
94B50 Synchronization error-correcting codes

References:

[1] Shor P.W.: Why haven’t more quantum algorithms been found. J. ACM 50, 87–90 (2003) · Zbl 1326.68139 · doi:10.1145/602382.602408
[2] Shor P.: Progress in quantum algorithms. Quantum Inf. Process. 3, 5–13 (2004) · Zbl 1075.68602 · doi:10.1007/s11128-004-3878-2
[3] Shor P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26, 1484–1509 (1997) · Zbl 1005.11065 · doi:10.1137/S0097539795293172
[4] Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212–219. ACM, New York, NY (1996) · Zbl 0922.68044
[5] Feynman R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982) · doi:10.1007/BF02650179
[6] Lloyd S.: Universal quantum simulators. Science 273, 1073–1078 (1996) · Zbl 1226.81059 · doi:10.1126/science.273.5278.1073
[7] Meyer D.A.: Quantum mechanics of lattice gas automata: one-particle plane waves and potentials. Phys. Rev. E 55, 5261–5269 (1997) · doi:10.1103/PhysRevE.55.5261
[8] Boghosian B.M., Taylor W.: Quantum lattice-gas models for the many-body Schrodinger equation in d dimensions. Phys. Rev. E 57, 54–66 (1998) · doi:10.1103/PhysRevE.57.54
[9] Zalka C.: Simulating quantum systems on a quantum computer. Proc. R. Soc. Lond. Ser. A 454, 313–322 (1998) · Zbl 0915.68048 · doi:10.1098/rspa.1998.0162
[10] Abrams D.S., Lloyd S.: Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586–2589 (1997) · doi:10.1103/PhysRevLett.79.2586
[11] Terhal B.M.: Bell inequalities and the separability criterion. Phys. Lett. A 271, 319–326 (2000) · Zbl 1115.81320 · doi:10.1016/S0375-9601(00)00401-1
[12] Freedman M.H., Kitaev A., Wang Z.: Simulation of topological field theoriesby quantum computers. Commun. Math. Phys. 227, 587–603 (2002) · Zbl 1014.81006 · doi:10.1007/s002200200635
[13] Lidar D.A., Wang H.: Calculating the thermal rate constant with exponential speed- up on a quantum computer. Phys. Rev. E 59, 2429–2438 (1999) · doi:10.1103/PhysRevE.59.2429
[14] Ortiz G., Gubernatis J.E., Knill E., Laflamme R.: Quantum algorithms for fermionic simulations. Phys. Rev. A 64, 022319-1–022319-14 (2001) · doi:10.1103/PhysRevA.64.022319
[15] Wu L.-A., Byrd M.S., Lidar D.A.: Polynomial-time simulation of the BCS Hamiltonian. Phys. Rev. Lett. 89, 057904-1–057904-4 (2002)
[16] Jane E., Vidal G., Dür W., Zoller P., Cirac J.I.: Simulation of quantum dynamics with quantum optical systems. Quantum Inf. Comp. 3, 015–037 (2003)
[17] Shor P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, R2493–R2496 (1995) · doi:10.1103/PhysRevA.52.R2493
[18] Steane A.: Quantum computing. Rep. Prog. Phys. 61, 117 (1998) · doi:10.1088/0034-4885/61/2/002
[19] Calderbank A.R., Shor P.W.: Good quantum error correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996) · doi:10.1103/PhysRevA.54.1098
[20] Gottesman, D.: Stabilizer Codes and Quantum Error Correction. Ph.D. thesis, California Institute of Technology, Pasadena, CA (1997). Eprint quant-ph/9705052
[21] Zanardi P., Rasetti M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306–3309 (1997) · doi:10.1103/PhysRevLett.79.3306
[22] Duan L.-M., Guo G.-C.: Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment. Phys. Rev. A 57, 737–741 (1998) · doi:10.1103/PhysRevA.57.737
[23] Lidar D.A., Chuang I.L., Whaley K.B.: Decoherence free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998) · doi:10.1103/PhysRevLett.81.2594
[24] Knill E., Laflamme R., Viola L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84, 2525–2528 (2000) · Zbl 0956.81008 · doi:10.1103/PhysRevLett.84.2525
[25] Zanardi P., Rasetti M.: Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999) · Zbl 0949.81009 · doi:10.1016/S0375-9601(99)00803-8
[26] Pachos J., Zanardi P., Rasetti M.: Non-Abelian Berry connections for quantum computation. Phys. Rev. A 61, 010305(R)-1–010305(R)-4 (1999) · doi:10.1103/PhysRevA.61.010305
[27] Vogel K., Risken H.: Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989) · doi:10.1103/PhysRevA.40.2847
[28] Somma R., Ortiz G., Gubernatis J.E., Knill E., Laflamme R.: Simulating physical phenomena by quantum networks. Phys. Rev. A 65, 042323-1–042323-14 (2002) · doi:10.1103/PhysRevA.65.042323
[29] Paz J.P., Roncaglia A.: Quantum gate arrays can be programmed to evaluate the expectation value of any operator. Phys. Rev. A 68, 052316-1–052316-5 (2003) · doi:10.1103/PhysRevA.68.052316
[30] Alves C.M., Horodecki P., Oi D.K.L., Kwek L.C., Ekert A.K.: Direct estimation of functionals of density operators by local operations and classical communication. Phys. Rev. A 68, 032306-1–032306-4 (2003) · doi:10.1103/PhysRevA.68.032306
[31] D’Ariano G.M., Macchiavello C., Perinotti P.: Optimal phase estimation for qubit mixed states. Phys. Rev. A 72, 042327-1–042327-4 (2005)
[32] Kitaev, A.: Quantum measurements and the Abelian Stabilizer Problem (1995) (quant-ph/9511026)
[33] Cleve R., Ekert A., Macchiavello C., Mosca M.: Quantum algorithms revisited. Proc. R. Soc. Lond. Ser. A 454, 339–354 (1998) · Zbl 0915.68050 · doi:10.1098/rspa.1998.0164
[34] Abrams D.S., Lloyd S.: Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Phys. Rev. Lett. 83, 5162–5165 (1999) · doi:10.1103/PhysRevLett.83.5162
[35] Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK (2000) · Zbl 1049.81015
[36] Emerson J., Weinstein Y.S., Saraceno M., Lloyd S., Cory D.G.: Pseudo-random unitary operators for quantum information processing. Science 302, 2098–2100 (2003) · Zbl 1226.81036 · doi:10.1126/science.1090790
[37] Mohseni M., Lidar D.A.: Direct characterization of quantum dynamics. Phys. Rev. Lett. 97, 170501-1–170501-4 (2006) · doi:10.1103/PhysRevLett.97.170501
[38] Braunstein S.L.: Some limits to precision phase measurement. Phys. Rev. A 49, 69–75 (1994) · doi:10.1103/PhysRevA.49.69
[39] Giovannetti V., Lloyd S., Maccone L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004) · doi:10.1126/science.1104149
[40] Brown K.R., Clark R.J., Chuang I.L.: Limitations of quantum simulation examined by simulating a pairing Hamiltonian using nuclear magnetic resonance. Phys. Rev. Lett. 97, 050504-1–050504-4 (2006) · doi:10.1103/PhysRevLett.97.050504
[41] Jordan P., Wigner E.: Über das Paulische Äquivalenzverbot. Z. Phys. 47, 631–651 (1928) · JFM 54.0983.03 · doi:10.1007/BF01331938
[42] Wu L.-A., Lidar D.A.: Qubits as parafermions. J. Math. Phys. 43, 4506–4525 (2002) · Zbl 1060.81519 · doi:10.1063/1.1499208
[43] Mahler G., Weberruss V.A.: Quantum Networks: Dynamics of Open Nanostructures, 2nd edn. Springer, Berlin (1998)
[44] Jakóbczyk L., Siennicki M.: Geometry of Bloch vectors in two-qubit system. Phys. Lett. A 286, 383–390 (2001) · Zbl 0971.81001 · doi:10.1016/S0375-9601(01)00455-8
[45] Byrd M.S., Khaneja N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A 68, 062322-1–062322-13 (2003) · doi:10.1103/PhysRevA.68.062322
[46] Kimura G.: The bloch vector for N-level systems. Phys. Lett. A 314, 339–349 (2003) · Zbl 1052.81117 · doi:10.1016/S0375-9601(03)00941-1
[47] Byrd M.S., Wu L.-A., Lidar D.A.: Overview of quantum error prevention and leakage elimination. J. Mod. Opt. 51, 2449–2460 (2004) · Zbl 1059.81516 · doi:10.1080/09500340408231803
[48] Byrd M.S., Lidar D.A.: Empirical determination of Bang–Bang Operations. Phys. Rev. A 67, 012324-1–012324-14 (2003) · doi:10.1103/PhysRevA.67.012324
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.