×

Optimized Lie-Trotter-Suzuki decompositions for two and three non-commuting terms. (English) Zbl 1435.81008

Summary: Lie-Trotter-Suzuki decompositions are an efficient way to approximate operator exponentials \(\exp (tH)\) when \(H\) is a sum of \(n\) (non-commuting) terms which, individually, can be exponentiated easily. They are employed in time-evolution algorithms for tensor network states, digital quantum simulation protocols, path integral methods like quantum Monte Carlo, and splitting methods for symplectic integrators in classical Hamiltonian systems. We provide optimized decompositions up to order \(t^6\). The leading error term is expanded in nested commutators (Hall bases) and we minimize the 1-norm of the coefficients. For \(n = 2\) terms, several of the optima we find are close to those in [R. I. McLachlan, SIAM J. Sci. Comput. 16, No. 1, 151–168 (1995; Zbl 0821.65048)]. Generally, our results substantially improve over unoptimized decompositions by Forest, Ruth, Yoshida, and Suzuki. We explain why these decompositions are sufficient to efficiently simulate any one- or two-dimensional lattice model with finite-range interactions. This follows by solving a partitioning problem for the interaction graph.

MSC:

81-10 Mathematical modeling or simulation for problems pertaining to quantum theory
81-08 Computational methods for problems pertaining to quantum theory

Citations:

Zbl 0821.65048

References:

[1] Trotter, H. F., Proc. Amer. Math. Soc., 10, 545 (1959) · Zbl 0099.10401
[2] Suzuki, M., Comm. Math. Phys., 51, 183 (1976) · Zbl 0341.47028
[3] Vidal, G., Phys. Rev. Lett., 93, Article 040502 pp. (2004)
[4] White, S. R.; Feiguin, A. E., Phys. Rev. Lett., 93, Article 076401 pp. (2004)
[5] Daley, A. J.; Kollath, C.; Schollwöck, U.; Vidal, G., J. Stat. Mech., P04005 (2004) · Zbl 1075.82015
[6] Orús, R.; Vidal, G., Phys. Rev. B, 78, Article 155117 pp. (2008)
[7] Verstraete, F.; Cirac, J. I., Renormalization algorithms for quantum-many body systems in two and higher dimensions (2004), arXiv:cond-mat/0407066
[8] Verstraete, F.; Wolf, M. M.; Perez-Garcia, D.; Cirac, J. I., Phys. Rev. Lett., 96, Article 220601 pp. (2006) · Zbl 1228.81096
[9] Niggemann, H.; Klümper, A.; Zittartz, J., Z. Phys. B, 104, 103 (1997)
[10] Nishino, T.; Okunishi, K.; Hieida, Y.; Maeshima, N.; Akutsu, Y., Nuclear Phys. B, 575, 504 (2000)
[11] Martín-Delgado, M. A.; Roncaglia, M.; Sierra, G., Phys. Rev. B, 64, Article 075117 pp. (2001)
[12] Lloyd, S., Science, 273, 1073 (1996) · Zbl 1226.81059
[13] Berry, D. W.; Ahokas, G.; Cleve, R.; Sanders, B. C., Comm. Math. Phys., 270, 359 (2007) · Zbl 1115.81011
[14] Lanyon, B. P.; Hempel, C.; Nigg, D.; Müller, M.; Gerritsma, R.; Zähringer, F.; Schindler, P.; Barreiro, J. T.; Rambach, M.; Kirchmair, G.; Hennrich, M.; Zoller, P.; Blatt, R.; Roos, C. F., Science, 334, 57 (2011)
[15] Kliesch, M.; Barthel, T.; Gogolin, C.; Kastoryano, M.; Eisert, J., Phys. Rev. Lett., 107, Article 120501 pp. (2011)
[16] Barreiro, J. T.; Müller, M.; Schindler, P.; Nigg, D.; Monz, T.; Chwalla, M.; Hennrich, M.; Roos, C. F.; Zoller, P.; Blatt, R., Nature, 470, 486 (2011)
[17] Childs, A. M.; Maslov, D.; Nam, Y.; Ross, N. J.; Su, Y., Proc. Natl. Acad. Sci. U.S.A, 115, 9456 (2018) · Zbl 1415.68107
[18] Suzuki, M.; Miyashita, S.; Kuroda, A., Progr. Theoret. Phys., 58, 1377 (1977) · Zbl 1098.81683
[19] Kolorenč, J.; Mitas, L., Rep. Progr. Phys., 74, Article 026502 pp. (2011)
[20] Ruth, R. D., IEEE Trans. Nucl. Sci., 30, 2669 (1983)
[21] Yoshida, H., Phys. Lett. A, 150, 262 (1990)
[22] McLachlan, R. I., SIAM J. Sci. Comput., 16, 151 (1995) · Zbl 0821.65048
[23] Forest, E.; Ruth, R. D., Physica D, 43, 105 (1990) · Zbl 0713.65044
[24] Suzuki, M., J. Math. Phys., 32, 400 (1991) · Zbl 0735.47009
[25] Kahan, W.; Li, R.-C., Math. Comp., 66, 1089 (1997)
[26] Omelyan, I.; Mryglod, I.; Folk, R., Comput. Phys. Comm., 146, 188 (2002) · Zbl 1043.70004
[27] Mahan, G. D., Many Particle Physics (2000), Plenum: Plenum New York
[28] Campbell, J. E., Proc. Lond. Math. Soc., s1-29, 14 (1897)
[29] Baker, H. F., Proc. Lond. Math. Soc., s2-3, 24 (1905) · JFM 36.0225.01
[30] Hausdorff, F., Ber. Verh. Sächs. Akad. Wiss. Leipzig, 58, 19 (1906)
[31] Dynkin, E. B., Dokl. Akad. Nauk SSSR (N.S.), 57, 323 (1947) · Zbl 0029.24507
[32] Dynkin, E. B., Mat. Sb. (N.S.), 25, 155 (1949)
[33] Varadarajan, V., (Lie Groups, Lie Algebras, and their Representations, Graduate Texts in Mathematics (1984), Springer: Springer New York) · Zbl 0955.22500
[34] Rossmann, W., (Lie Groups: An Introduction Through Linear Groups, Oxford Graduate Texts in Mathematics (2002), Oxford University Press: Oxford University Press Oxford) · Zbl 0989.22001
[35] Hall, M., Proc. Amer. Math. Soc., 1, 575 (1950) · Zbl 0039.26302
[36] Serre, J.-P., (Lie Algebras and Lie Groups, Lecture Notes in Mathematics (1992), Springer: Springer Heidelberg) · Zbl 0742.17008
[37] Reutenauer, C., (Free Lie Algebras, LMS monographs (1993), Oxford University Press: Oxford University Press Oxford)
[38] Witt, E., Math. Z., 64, 195 (1956) · Zbl 0070.02903
[39] B. Buchberger, Ph.D. thesis, 1965.
[40] Adams, W.; Loustaunau, P., An Introduction To Gröbner Bases (1994), Amer. Math. Soc · Zbl 0803.13015
[41] Buchberger, B., SIGSAM Bull., 10, 19 (1976)
[42] Cox, D.; Little, J.; O’Shea, D., (Ideals, varieties, and algorithms, An Introduction To Computational Algebraic Geometry and Commutative Algebra (2007), Springer: Springer New York), xv 551 · Zbl 1118.13001
[43] Faugère, J.-C., J. Pure Appl. Algebra, 139, 61 (1999) · Zbl 0930.68174
[44] Faugère, J. C., Proc. ISSAC, 75 (2002)
[45] Lieb, E. H.; Robinson, D. W., Comm. Math. Phys., 28, 251 (1972)
[46] Poulin, D., Phys. Rev. Lett., 104, Article 190401 pp. (2010)
[47] Nachtergaele, B.; Vershynina, A.; Zagrebnov, V. A., Contemp. Math., 552, 161 (2011)
[48] Barthel, T.; Kliesch, M., Phys. Rev. Lett., 108, Article 230504 pp. (2012)
[49] Nachtergaele, B.; Sims, R., (Sidoravicius, V., New Trends in Mathematical Physics, Selected contributions of the XVth International Congress on Mathematical Physics (2009), Springer: Springer Heidelberg), 591-614 · Zbl 1175.82008
[50] McLachlan, R. I.; Atela, P., Nonlinearity, 5, 541 (1992) · Zbl 0747.58032
[51] Barthel, T., New J. Phys., 15, Article 073010 pp. (2013)
[52] Lake, B.; Tennant, D. A.; Caux, J.-S.; Barthel, T.; Schollwöck, U.; Nagler, S. E.; Frost, C. D., Phys. Rev. Lett., 111, Article 137205 pp. (2013)
[53] Cai, Z.; Barthel, T., Phys. Rev. Lett., 111, Article 150403 pp. (2013)
[54] Barthel, T., Phys. Rev. B, 94, Article 115157 pp. (2016)
[55] Barthel, T., Typical one-dimensional quantum systems at finite temperatures can be simulated efficiently on classical computers (2017), arXiv:1708.09349
[56] Binder, M.; Barthel, T., Phys. Rev. B, 98, Article 235114 pp. (2018)
[57] Sornborger, A. T.; Stewart, E. D., Phys. Rev. A, 60, 1956 (1999)
[58] Cazalilla, M. A.; Marston, J. B., Phys. Rev. Lett., 88, Article 256403 pp. (2002)
[59] Feiguin, A. E.; White, S. R., Phys. Rev. B, 72 (2005), 020404(R), http://dx.doi.org/10.1103/PhysRevB.72.020404
[60] Schmitteckert, P., Phys. Rev. B, 70, Article 121302 pp. (2004)
[61] García-Ripoll, J. J., New J. Phys., 8, 305 (2006)
[62] Dargel, P. E.; Wöllert, A.; Honecker, A.; McCulloch, I. P.; Schollwöck, U.; Pruschke, T., Phys. Rev. B, 85, Article 205119 pp. (2012)
[63] Wall, M. L.; Carr, L. D., New J. Phys., 14, Article 125015 pp. (2012)
[64] Haegeman, J.; Cirac, J. I.; Osborne, T. J.; Pižorn, I.; Verschelde, H.; Verstraete, F., Phys. Rev. Lett., 107, Article 070601 pp. (2011)
[65] Haegeman, J.; Lubich, C.; Oseledets, I.; Vandereycken, B.; Verstraete, F., Phys. Rev. B, 94, Article 165116 pp. (2016)
[66] Schollwöck, U., Ann. Phys., NY, 326, 96 (2011) · Zbl 1213.81178
[67] Paeckel, S.; Köhler, T.; Swoboda, A.; Manmana, S. R.; Schollwöck, U.; Hubig, C., Ann. Phys., NY, 411, 167998 (2019) · Zbl 1433.81170
[68] Berry, D. W.; Childs, A. M.; Cleve, R.; Kothari, R.; Somma, R. D., Proc. 46 Ann. ACM Symp. Theor. Comp., 283-292 (2014), ACM: ACM New York · Zbl 1315.68133
[69] Berry, D. W.; Childs, A. M.; Cleve, R.; Kothari, R.; Somma, R. D., Phys. Rev. Lett., 114, Article 090502 pp. (2015)
[70] Low, G. H.; Chuang, I. L., Phys. Rev. Lett., 118, Article 010501 pp. (2017)
[71] Haah, J.; Hastings, M. B.; Kothari, R.; Low, G. H., Quantum algorithm for simulating real time evolution of lattice hamiltonians (2018), arXiv:1801.03922
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.