×

Deriving priorities from pairwise comparison matrices with a novel consistency index. (English) Zbl 1433.90071

Summary: It is important to measure the inconsistency level of a pairwise comparison matrix (PCM) and derive the priority vector in the analytic hierarchy process (AHP). In the present study, a new consistency index is proposed by using the cosine similarity measures of two row/column vectors in a PCM. It is called as the double cosine similarity consistency index (DCSCI) since the row and column vectors are all considered. Some interesting properties of DCSCI are investigated and the thresholds for inconsistency tolerance level are discussed in detail. Then following the idea of DCSCI, we provide a new method for obtaining the priority vector from a PCM. Through maximizing the sum of the cosine similarity measures between the priority vector and the row/column vectors, the priority vector is derived by solving the constructed optimization problem. By analyzing the proposed double cosine similarity maximization (DCSM) method, it is found that the existing cosine maximization (CM) method can be retrieved. By carrying out numerical examples, some comparisons with the existing methods show that the proposed index and method are effective and flexible.

MSC:

90B50 Management decision making, including multiple objectives
91B06 Decision theory
65K10 Numerical optimization and variational techniques
Full Text: DOI

References:

[1] Saaty, T. L., A scaling method for priorities in hierarchical structures, J. Math. Psychol., 15, 234-281 (1977) · Zbl 0372.62084
[2] Kou, G.; Lu, Y. Q.; Peng, Y.; Shi, Y., Evaluation of classification algorithms using MCDM and rank correlation, Int. J. Inf. Tech. Decis. Mak., 11, 1, 197-225 (2012)
[3] Kou, G.; Peng, Y.; Wang, G. X., Evaluation of clustering algorithms for financial risk analysis using MCDM methods, Inf. Sci., 275, 1-12 (2014)
[4] Kou, G.; Yang, P.; Peng, Y.; Xiao, F.; Chen, Y.; Alsaadi, F. E., Evaluation of feature selection methods for text classification with small datasets using multiple criteria decision-making methods, Appl. Soft Comput. (2019)
[5] Li, G. X.; Kou, G.; Peng, Y., A group decision making model for integrating heterogeneous information, IEEE Tran. Syst. Man Cybern. Syst, 48, 6, 982-992 (2018)
[6] Zhang, H. H.; Kou, G.; Peng, Y., Soft consensus cost models for group decision making and economic interpretations, Eur. J. Oper. Res., 277, 964-980 (2019)
[7] Saaty, T. L., The Analytic Hierarchy Process (1980), McGraw-Hill: McGraw-Hill New York · Zbl 0587.90002
[8] Golden, B. L.; Wasil, E. A.; Harker, P. T., The Analytic Hierarchy Process: Applications and Studies (1989), Springer: Springer Berlin
[9] Saaty, T. L.; Vargas, L. G., Models, Methods, Concepts and Applications of the Analytic Hierarchy Process (2012), Springer Science & Business Media: Springer Science & Business Media Berlin · Zbl 1241.90001
[10] Saaty, T. L., The modern science of multicriteria decision making and its practical applications: the AHP/ANP approach, Oper. Res., 61, 1101-1118 (2013) · Zbl 1291.90110
[11] Kou, G.; Ergu, D.; Lin, C. S.; Chen, Y., Pairwise comparison matrix in multiple criteria decision making, tech, Econ. Dev. Econ., 22, 5, 738-765 (2016)
[12] Brunelli, M.; Fedrizzi, M., Axiomatic properties of inconsistency indices for pairwise comparisons, J. Oper. Res. Soc., 66, 1-15 (2015)
[13] Brunelli, M., Studying a set of properties of inconsistency indices for pairwise comparisons, Ann. Oper. Res., 248, 143-161 (2017) · Zbl 1406.91081
[14] Crawford, G. B., The geometric mean procedure for estimating the scale of a judgement matrix, Math. Model., 9, 327-334 (1987) · Zbl 0624.62108
[15] Aguarón, J.; Moreno-Jiménez, J. M., The geometric consistency index: approximated thresholds, Eur. J. Oper. Res., 147, 137-145 (2003) · Zbl 1060.90657
[16] Peláez, J. I.; Lamata, M. T., A new measure of consistency for positive reciprocal matrices, Comput. Math. Appl., 46, 1839-1845 (2003) · Zbl 1121.91334
[17] Peláez, J. I.; Martínez, E. A.; Vargas, L. G., Consistency in positive reciprocal matrices: an improvement in measurement methods, IEEE Access, 6, 25600-25609 (2018)
[18] Stein, W. E.; Mizzi, P. J., The harmonic consistency index for the analytic hierarchy process, Eur. J. Oper. Res., 177, 488-497 (2007) · Zbl 1111.90057
[19] Cavallo, B.; D’Apuzzo, L., Characterizations of consistent pairwise comparison matrices over Abelian linearly ordered groups, Int. J. Intell. Syst., 25, 1035-1059 (2010) · Zbl 1202.90156
[20] Xia, M. M.; Chen, J., Consistency and consensus improving methods for pairwise comparison matrices based on Abelian linearly ordered group, Fuzzy Set. Syst, 266, 1-32 (2015) · Zbl 1361.91031
[21] Koczkodaj, W. W.; Szybowski, J.; Wajch, E., Inconsistency indicator maps on groups for pairwise comparisons, Int. J. Approx. Reason, 69, 81-90 (2016) · Zbl 1415.91093
[22] Kou, G.; Lin, C. S., A cosine maximization method for the priority vector derivation in AHP, Eur. J. Oper. Res., 235, 225-232 (2014) · Zbl 1305.91082
[23] Grzybowski, A. Z., New results on inconsistency indices and their relationship with the quality of priority vector estimation, Expert Syst. Appl., 43, 197-212 (2016)
[24] Alonso, J. A.; Lamata, M. T., Consistency in the analytic hierarchy process: a new approach, Int. J. Uncert. Fuzzin. Knowl. Based Syst., 14, 445-459 (2006) · Zbl 1097.68633
[25] Vargas, L. G., The consistency index in reciprocal matrices: comparison of deterministic and statistical approaches, Eur. J. Oper. Res., 191, 454-463 (2008) · Zbl 1147.90025
[26] Ergu, D.; Kou, G.; Shi, Y.; Shi, Y., Analytic network process in risk assessment and decision analysis, Comput. Oper. Res., 42, 58-74 (2014) · Zbl 1348.91086
[27] Chen, K.; Kou, G.; Tarn, J. M.; Song, Y., Bridging the gap between missing and inconsistent values in eliciting preference from pairwise comparison matrices, Ann. Oper. Res., 235, 155-175 (2015) · Zbl 1332.90124
[28] Siraj, S.; Mikhailov, L.; Keane, J. A., Contribution of individual judgments toward inconsistency in pairwise comparisons, Eur. J. Oper. Res., 242, 557-567 (2015) · Zbl 1341.90073
[29] Chu, A.; Kalaba, R.; Spingarn, K., A comparison of two methods for determining the weights of belonging to fuzzy sets, J. Optimiz. Theory Appl., 27, 531-538 (1979) · Zbl 0377.94002
[30] Saaty, T. L.; Vargas, L. G., Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios, Math. Model., 5, 309-324 (1984) · Zbl 0584.62102
[31] Cogger, K.; Yu, P., Eigenweight vectors and least-distance approximation for revealed preference in pairwise weight ratios, J. Optimiz. Theory Appl., 46, 483-491 (1985) · Zbl 0552.90050
[32] Islei, G.; Lockett, A., Judgemental modelling based on geometric least square, Eur. J. Oper. Res., 36, 27-35 (1988) · Zbl 0643.90002
[33] Bryson, N., A goal programming method for generating priority vectors, J. Oper. Res. Soc., 46, 641-648 (1995) · Zbl 0830.90001
[34] Barzilai, J., Deriving weights from pairwise comparison matrices, J. Oper. Res. Soc., 48, 1226-1232 (1997) · Zbl 0895.90004
[35] Mikhailov, L., A fuzzy programming method for deriving priorities in the analytic hierarchy process, J. Oper. Res. Soc., 51, 341-349 (2000) · Zbl 1055.90560
[36] Gass, S. I.; Rapcsák, T., Singular value decomposition in AHP, Eur. J. Oper. Res., 154, 573-584 (2004) · Zbl 1146.90445
[37] Sugihara, K.; Ishii, H.; Tanaka, H., Interval priorities in AHP by interval regression analysis, Eur. J. Oper. Res., 158, 745-754 (2004) · Zbl 1056.90093
[38] Chandran, B.; Golden, B.; Wasil, E., Linear programming models for estimating weights in the analytic hierarchy process, Comput. Oper. Res., 32, 2235-2254 (2005) · Zbl 1116.90363
[39] Ramanathan, R., Data envelopment analysis for weight derivation and aggregation in the analytic hierarchy process, Comput. Oper. Res., 33, 1289-1307 (2006) · Zbl 1104.90307
[40] Wang, Y. M.; Parkan, C.; Luo, Y., Priority estimation in the AHP through maximization of correlation coefficient, Appl. Math. Model, 31, 2711-2718 (2007) · Zbl 1147.90362
[41] Altuzarra, A.; Moreno-Jiménez, J. M.; Salvador, M., A bayesian priorization procedure for AHP-group decision making, Eur. J. Oper. Res., 182, 367-382 (2007) · Zbl 1128.90507
[42] Srdjevic, B., Combining different prioritization methods in the analytic hierarchy process synthesis, Comput. Oper. Res., 32, 1897-1919 (2005) · Zbl 1075.90530
[43] Lipovetsky, S.; Conklin, W. M., Robust estimation of priorities in the AHP, Eur. J. Oper. Res., 137, 110-122 (2002) · Zbl 1009.90059
[44] Srdjevic, B.; Srdjevic, Z., Bi-criteria evolution strategy in estimating weights from the AHP ratio-scale matrices, Appl. Math. Comput., 218, 1254-1266 (2011) · Zbl 1229.65070
[45] Lin, C. S.; Kou, G.; Ergu, D., A heuristic approach for deriving the priority vector in AHP, Appl. Math. Model., 37, 5828-5836 (2013) · Zbl 1274.90178
[46] Bernasconi, M.; Choirat, C.; Seri, R., The analytic hierarchy process and the theory of measurement, Manag. Sci., 56, 699-711 (2010) · Zbl 1232.91572
[47] Zhang, Y.; Fan, Z. P.; Liu, Y., A method based on stochastic dominance degrees for stochastic multiple criteria decision making, Comput. Ind. Eng., 58, 544-552 (2010)
[48] Dunham, M., Data Mining, Introductory and Advanced Topics (1997), Pearson Education Inc: Pearson Education Inc New Jersey
[49] Golany, B.; Kress, M., A multicriteria evaluation of methods for obtaining weights from ratio-scale matrices, Eur. J. Oper. Res., 69, 210-220 (1993) · Zbl 0800.90007
[50] Saaty, T. L., Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process (2000), RWS Publicating, Pittsburgh
[51] Xu, Z. S.; Wei, C. P., A consistency improving method in the analytic hierarchy process, Eur. J. Oper. Res., 116, 2, 443-449 (1999) · Zbl 1009.90513
[52] Liu, F.; Pedrycz, W.; Wang, Z. X.; Zhang, W. G., An axiomatic approach to approximation-consistency of triangular fuzzy reciprocal preference relations, Fuzzy Set. Syst., 322, 1-18 (2017) · Zbl 1368.91054
[53] Liu, F.; Pedrycz, W.; Zhang, W. G., Limited rationality and its quantification through the interval number judgments with permutations, IEEE Trans. Cybern., 47, 12, 4025-4037 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.