×

Insights of global sensitivity analysis in biological models with dependent parameters. (English) Zbl 1426.62326

Summary: Global sensitivity analysis (GSA) has become an important tool in the modeling process of biological phenomenon to determine how the uncertainty of model inputs influences the model response. Usually, GSA methods assume the independence of input distributions and several heuristics for model design were defined to improve models’ design and parametrization [J. Cariboni et al., “The role of sensitivity analyis in ecological modelling”, Ecol. Model. 203, No. 1-2, 167–182 (2007; doi:10.1016/j.ecolmodel.2005.10.045)]. However, recent developments of GSA with dependent inputs suggest reconsidering them from another perspective. In particular, Sobol’s indices were generalized to dependent inputs by explicitly dissociating structural and correlation influence on model outputs [G. Li et al., “Global sensitivity analysis for systems with independent and/or correlated inputs”, J. Phys. Chem. A 114, No. 19, 6022–6032 (2010; doi:10.1021/jp9096919)]. This study considers the prey-predator model, Lotka-Volterra, and the individual plant growth model, Sunflo, to illustrate these new indices and aims to confront them to usual heuristics. The introduction of parameters’ dependence was managed with copulas’ theory, and generalized Sobol’s indices were estimated with the hierarchically orthogonal Gram-Schmidt procedure [G. Chastaing et al., “Generalized sobol sensitivity indices for dependent variables: numerical methods”, J. Stat. Comput. Simulation 85, No. 7, 1306–1333 (2015; doi:10.1080/00949655.2014.960415)]. Strong changes were observed due to the introduction of parameters’ dependence, but classical heuristics remain consistent in the generalized framework. Although additional studies are essential to define more precisely these new heuristics, generalized Sobol’s indices are a promising statistical tool for deepening the understanding of biological model behavior.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] Baey, C., A. Mathieu, A. Jullien, S. Trevezas, and P.-H. Cournède 2017. Mixed-effects estimation in dynamic models of plant growth for the assessment of inter-individual variability. Journal of agricultural, biological and environmental statistics, In press. · Zbl 1391.62266
[2] Cariboni, J., D. Gatelli, R. Liska, and A. Saltelli 2007. The role of sensitivity analysis in ecological modelling. Ecological modelling, 203(1-2):167-182. Special Issue on Ecological Informatics: Biologically-Inspired Machine Learning 4th Conference of the International Society for Ecological Informatics.
[3] Casadebaig, P., L. Guilioni, J. Lecoeur, A. Christophe, L. Champolivier, and P. Debaeke 2011. Sunflo, a model to simulate genotype-specific performance of the sunflower crop in contrasting environments. Agricultural and forest meteorology, 151(2):163-178. · doi:10.1016/j.agrformet.2010.09.012
[4] Champion, M., G. Chastaing, S. Gadat, and C. Prieur 2015. L2-boosting for sensitivity analysis with dependent inputs. Statistica sinica, 25(4):1477-1502. · Zbl 1377.62156
[5] Chastaing, G. 2013. Indices de Sobol généralisés pour variables dépendantes. PhD thesis, Université de Grenoble.
[6] Chastaing, G., F. Gamboa, and C. Prieur 2015. Generalized sobol sensitivity indices for dependent variables: numerical methods. Journal of statistical computation and simulation, 85(7):1306-1333. · Zbl 1457.62109 · doi:10.1080/00949655.2014.960415
[7] Cournéde, P.-H., Y. Chen, Q. Wu, C. Baey, and B. Bayol 2013. Development and evaluation of plant growth models : Methodology and implementation in the pygmalion platform. Mathematical modelling of natural phenomena, 8(4):112-130. · Zbl 1281.92001 · doi:10.1051/mmnp/20138407
[8] Davidian, M. and D. M. Giltinan 2003. Nonlinear models for repeated measurement data: an overview and update. Journal of agricultural, biological and environmental statistics, 8(4):387-419. · doi:10.1198/1085711032697
[9] Reffye, P.; Heuvelink, E.; Barthélémy, D.; Cournède, P-H; Jorgensen, SE (ed.); Fath, B. (ed.), Plant growth models, 2824-2837 (2008), Amsterdam, NX, Netherlands · doi:10.1016/B978-008045405-4.00217-2
[10] Hoeffding, W. 1948. A class of statistics with asymptotically normal distribution. The annals of mathematical statistics, 19(3):293-325. · Zbl 0032.04101 · doi:10.1214/aoms/1177730196
[11] Hooker, G. 2007. Generalized functional anova diagnostics for high-dimensional functions of dependent variables. Journal of computational and graphical statistics, 16(November):709-732. · doi:10.1198/106186007X237892
[12] Jaworski, P., F. Durante, W. K. Hardle, and T. Rychlik 2010. Copula theory and its applications. Heidelberg, BW, Germany: Springer-Verlag. · Zbl 1194.62077 · doi:10.1007/978-3-642-12465-5
[13] Jones, M. C., J. S. Marron, and S. J. Sheather 1996. A brief survey of bandwidth selection for density estimation. Journal of the american statistical association, 91(433):401-407. · Zbl 0873.62040 · doi:10.1080/01621459.1996.10476701
[14] Kucherenko, S., S. Tarantola, and P. Annoni 2012. Estimation of global sensitivity indices for models with dependent variables. Computer physics communications, 183(4):937-946. · Zbl 1261.62062 · doi:10.1016/j.cpc.2011.12.020
[15] Lamboni, M., H. Monod, and D. Makowski 2011. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliability engineering & system safety, 96(4):450-459. · doi:10.1016/j.ress.2010.12.002
[16] Lecoeur, J., R. Poiré-Lassus, A. Christophe, B. Pallas, P. Casadebaig, P. Debaeke, F. Vear, and L. Guilioni 2011. Quantifying physiological determinants of genetic variation for yield potential in sunflower. sunflo: a model-based analysis. Functional plant biology, 38(3):246-259. · doi:10.1071/FP09189
[17] Letort, V., P. Mahe, P.-H. Cournède, P. de Reffye, and B. Courtois 2008. Quantitative genetics and functional-structural plant growth models: Simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. Annals of botany, 101(8):951-963.
[18] Li, G. and H. Rabitz 2012. General formulation of hdmr component functions with independent and correlated variables. Journal of mathematical chemistry, 50(1):99-130. · Zbl 1320.62232 · doi:10.1007/s10910-011-9898-0
[19] Li, G., H. Rabitz, P. E. Yelvington, O. O. Oluwole, F. Bacon, C. E. Kolb, and J. Schoendorf 2010. Global sensitivity analysis for systems with independent and/or correlated inputs. The journal of physical chemistry A, 114(19):6022-32. · doi:10.1021/jp9096919
[20] Monod, H., C. Naud, and D. Makowski 2006. Uncertainty and sensitivity analysis for crop models. In Working with dynamic crop models. Evaluation, analysis, parameterization, and applications., D. Wallach, D. Makowski, and J. W. Jones, eds., Pp. 55-100. Amsterdam, NX, Netherlands: Elsevier.
[21] Nelsen, R. B. 2007. An introduction to copulas. New York, NY, USA: Springer-Verlag. · Zbl 1152.62030
[22] Sainte-Marie, J., G. Viaud, and P.-H. Cournède 2017. Indices de sobol gènèralisès aux variables dèpendentes: tests de performance de l’algorithme hogs couplé à plusieurs estimateurs paramétriques. Journal de la société française de statistique, 158(1):68-89. Special Issue: Computer Experiments, Uncertainty and Sensitivity Analysis. · Zbl 1361.49021
[23] Saltelli, A., M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Tarantola 2008. Global sensitivity analysis. Chichester, SXW, England: John Wiley & Sons. · Zbl 1161.00304
[24] Scaillet, O., A. Charpentier, and J.-D. Fermanian 2007. The estimation of copulas: theory and practice. In Copulas: from theory to application in finance, J. Rank, ed., Pp. 35-64. London, LDN, England: London : Risk Books.
[25] Sklar, M. 1959. Fonctions de répartition àn dimensions et leurs marges. Paris, IDF, France: Universitè Paris 8.
[26] Sobol, I. 1993. Sensitivity analysis for non-linear mathematical models. Mathematical modeling and computational experiment, 1(4):407-414. · Zbl 1039.65505
[27] Stone, C. J. 1994. The use of polynomial splines and their tensor products in multivariate function estimation. The annals of statistics, 22(1):118-184. · Zbl 0827.62038 · doi:10.1214/aos/1176325361
[28] Tardieu, F. 2003. Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends in plant science, 8(1):9-14. · doi:10.1016/S1360-1385(02)00008-0
[29] Villasenor Alva, J. A. and E. González Estrada 2009. A generalization of shapiro-wilk’s test for multivariate normality. Communications in statistics - theory and methods, 38(11):1870-1883. · Zbl 1167.62406 · doi:10.1080/03610920802474465
[30] Vos, J., J. B. Evers, G. H. Buck-Sorlin, B. Andrieu, M. Chelle, and P. H. B. De Visser 2009. Functional – structural plant modelling: a new versatile tool in crop science. Journal of experimental Botany, 61(8):2101-15. · doi:10.1093/jxb/erp345
[31] Wu, Q.-L., P.-H. Cournède, and A. Mathieu 2012. An efficient computational method for global sensitivity analysis and its application to tree growth modelling. Reliability engineering & system safety, 107:35-43. · doi:10.1016/j.ress.2011.07.001
[32] Zou, H. and T. Hastie 2005. Regularization and variable selection via the elastic net. Journal of the royal statistical society, series B, 67(2):301-320. · Zbl 1069.62054 · doi:10.1111/j.1467-9868.2005.00503.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.