×

Relations between threshold constants for Yamabe type bordism invariants. (English) Zbl 1360.53039

In this paper, the authors study the relations between threshold constants for Yamabe-type bordism invariants. (The Yamabe invariant on closed manifolds is a bordism invariant below a certain threshold constant.) These threshold constants are characterized through Yamabe-type equations on products of spheres with rescaled hyperbolic spaces. After variational characterizations of these threshold constants they obtain an explicit positive lower bound for the spinorial threshold constants. Through the paper, after recalling existing results, the authors define the model spaces and several versions of the spinorial and non-spinorial Yamabe invariant for non-compact manifolds.
Central results of the article are noncompact versions of the Hijazi inequalities. Some of these slightly modified Hijazi inequalities are proven only for model spaces, some on more general manifolds (manifolds of bounded geometry with uniformly positive scalar curvature). For the investigation they also give regulatory statements for the Euler-Lagrange equation of the spinorial Yamabe functional. They give improvements of regularity for the Dirac Euler-Lagrange equation. The paper also contains an appendix on weak partial differential inequalities.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
35J60 Nonlinear elliptic equations
53C27 Spin and Spin\({}^c\) geometry
57R65 Surgery and handlebodies

References:

[1] Ammann, B.: The smallest Dirac eigenvalue in a spin-conformal class and cmc immersions. Commun. Anal. Geom. 17(3), 429-479 (2009) · Zbl 1185.58013 · doi:10.4310/CAG.2009.v17.n3.a2
[2] Ammann, B.: A variational problem in conformal spin geometry. Habilitation (Hamburg, 2003) · Zbl 1030.58020
[3] Ammann, B., Dahl, M., Humbert, E.: Surgery and harmonic spinors. Adv. Math. 220, 523-539 (2009) · Zbl 1159.53021 · doi:10.1016/j.aim.2008.09.013
[4] Ammann, B., Dahl, M., Humbert, E.: Surgery and the spinorial \[\tau\] τ-invariant. Commun. Part. Differ. Equ. 34(10-12), 1147-1179 (2009) · Zbl 1183.53041 · doi:10.1080/03605300902769204
[5] Ammann, B., Dahl, M., Humbert, E.: Smooth Yamabe invariant and surgery. J. Diff. Geom. 94, 1-58 (2013) · Zbl 1269.53037
[6] Ammann, B., Dahl, M., Humbert, E.: Square-integrability of solutions of the Yamabe equation. Commun. Anal. Geom. 21(5), 891-916 (2013) · Zbl 1296.53074 · doi:10.4310/CAG.2013.v21.n5.a2
[7] Ammann, B., Dahl, M., Humbert, E.: Low-dimensional surgery and the Yamabe invariant. J. Math. Soc. Jpn. 67(1), 159-182 (2015) · Zbl 1320.53036 · doi:10.2969/jmsj/06710159
[8] Ammann, B., Grosjean, J.-F., Humbert, E., Morel, B.: A spinorial analogue of Aubin’s inequality. Math. Z. 260(1), 127-151 (2008) · Zbl 1145.53039 · doi:10.1007/s00209-007-0266-5
[9] Ammann, B., Große, N.: Positive mass theorem for some asymptotically hyperbolic manifolds. arXiv:1502.05227 · Zbl 1484.53070
[10] Ammann, B., Große, \[N.: L^p\] Lp-spectrum of the Dirac operator on products with hyperbolic spaces. arXiv:1405.2830 · Zbl 1361.58014
[11] Ammann, B., Humbert, E.: The first conformal Dirac eigenvalue on 2-dimensional tori. J. Geom. Phys. 56(4), 623-642 (2006) · Zbl 1093.53048 · doi:10.1016/j.geomphys.2005.04.007
[12] Ammann, B., Humbert, E.: The spinorial \[\tau\] τ-invariant and 0-dimensional surgery. J. Reine Angew. Math. 624, 27-50 (2008) · Zbl 1158.53040
[13] Anderson, M.T.: Canonical metrics on 3-manifolds and 4-manifolds. Asian J. Math. 10(1), 127-163 (2006) · Zbl 1246.53063 · doi:10.4310/AJM.2006.v10.n1.a8
[14] Aubin, T.: Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. (9) 55(3), 269-296 (1976) · Zbl 0336.53033
[15] Booss-Bavnbek, B., Marcolli, M., Wang, B.-L.: Weak UCP and perturbed monopole equations. Int. J. Math. 13(9), 987-1008 (2002) · Zbl 1058.58014 · doi:10.1142/S0129167X02001551
[16] Bourguignon, J.-P., Gauduchon, P.: Spineurs, opérateurs de Dirac et variations de métriques. Commun. Math. Phys. 144(3), 581-599 (1992) · Zbl 0755.53009 · doi:10.1007/BF02099184
[17] Bray, H.L., Neves, A.: Classification of prime 3-manifolds with Yamabe invariant greater than \[{\mathbb{R} \mathbb{P}}^3\] RP3. Ann. Math. (2) 159(1), 407-424 (2004) · Zbl 1066.53077 · doi:10.4007/annals.2004.159.407
[18] Calderbank, D.M.J., Gauduchon, P., Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry. J. Funct. Anal. 173(1), 214-255 (2000) · Zbl 0960.58010 · doi:10.1006/jfan.2000.3563
[19] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition · Zbl 1042.35002
[20] Gromov, M., Lawson Jr, H.B.: Spin and scalar curvature in the presence of a fundamental group. I. Ann. Math. (2) 111(2), 209-230 (1980) · Zbl 0445.53025 · doi:10.2307/1971198
[21] Große, N.: On a Spin Conformal Invariant on Open Manifolds. Dissertation, Universität Leipzig (2008) · Zbl 1360.53002
[22] Große, N.: The Hijazi inequality on conformally parabolic manifolds. Differ. Geom. Appl. 29, 838-849 (2011) · Zbl 1235.53054 · doi:10.1016/j.difgeo.2011.08.011
[23] Große, N.: Solutions of the equation of a spinorial Yamabe-type problem on manifolds of bounded geometry. Commun. Part. Differ. Eq. 37, 58-76 (2012) · Zbl 1239.53068 · doi:10.1080/03605302.2011.618211
[24] Grosse, N.: The Yamabe equation on manifolds of bounded geometry. Commun. Anal. Geom. 21(5), 957-978 (2013) · Zbl 1296.53076 · doi:10.4310/CAG.2013.v21.n5.a4
[25] Große, N., Nardmann, M.: The Yamabe Constant on noncompact Manifolds. J. Geom. Anal. 24(2), 1092-1125 (2014) · Zbl 1315.53028 · doi:10.1007/s12220-012-9365-6
[26] Gursky, M.J., LeBrun, C.: Yamabe invariants and \[{\rm Spin}^c\] Spinc structures. Geom. Funct. Anal. 8(6), 965-977 (1998) · Zbl 0931.53019 · doi:10.1007/s000390050120
[27] Hebestreit, F., Joachim, M.: Twisted spin cobordism. arXiv:1311.3164 · Zbl 1523.55006
[28] Hebey, E.: Introduction à l’analyse non-linéaire sur les variétés. Fondations. Diderot Editeur, Paris (1997) · Zbl 0918.58001
[29] Hijazi, O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors. Commun. Math. Phys. 104(1), 151-162 (1986) · Zbl 0593.58040 · doi:10.1007/BF01210797
[30] Ishii, H.: On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions. Funkcial. Ekvac. 38(1), 101-120 (1995) · Zbl 0833.35053
[31] Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12(5), 2587-2855 (2008) · Zbl 1204.53033 · doi:10.2140/gt.2008.12.2587
[32] Kobayashi, O.: Scalar curvature of a metric with unit volume. Math. Ann. 279(2), 253-265 (1987) · Zbl 0611.53037 · doi:10.1007/BF01461722
[33] LeBrun, C.: Kodaira dimension and the Yamabe problem. Commun. Anal. Geom. 7(1), 133-156 (1999) · Zbl 0996.32009 · doi:10.4310/CAG.1999.v7.n1.a5
[34] Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17(1), 37-91 (1987) · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[35] Madani, F.: Le problème de Yamabe avec singularités. Bull. Sci. Math. 132(7), 575-591 (2008) · Zbl 1152.58017 · doi:10.1016/j.bulsci.2007.09.004
[36] Pohozaev, S.: Eigenfunctions of the equation \[\delta u + \lambda f(u) = 0\] δu+λf(u)=0 (English). Soviet Math. Dokl. 6 · Zbl 1204.53033
[37] Stolz, S.: Simply connected manifolds of positive scalar curvature. Ann. Math. (2) 136(3), 511-540 (1992) · Zbl 0784.53029 · doi:10.2307/2946598
[38] Streil, M.: PhD thesis, University of Regensburg (in preparation)
[39] Struwe, M.: Variational Methods. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 34, 2nd edn. Springer, Berlin (1996). Applications to nonlinear partial differential equations and Hamiltonian systems · Zbl 0864.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.