×

A Pieri formula for the characters of complex simple Lie algebras. (English) Zbl 07815443

Summary: A Pieri formula is presented for the characters of complex simple Lie algebras of arbitrary Dynkin type, providing the decomposition of the tensor product of a general irreducible representation with one taken from a particular subclass of very small representations. The class of very small irreducible representations under consideration exceeds the minuscule and quasi-minuscule representations and includes in particular all fundamental representations in the case of a classical Lie algebra.

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
05E05 Symmetric functions and generalizations
05E10 Combinatorial aspects of representation theory
17B20 Simple, semisimple, reductive (super)algebras
22E46 Semisimple Lie groups and their representations
33C52 Orthogonal polynomials and functions associated with root systems
Full Text: DOI

References:

[1] Bourbaki, N., Groupes et Algèbres de Lie, Chapitres 4-6, 1968, Paris: Hermann, Paris · Zbl 0186.33001
[2] Brauer, R., Sur la multiplication des charactéristiques des groupes continus et semi-simples, C. R. Acad. Sci. Paris, 204, 1784-1786, 1937 · JFM 63.0081.01
[3] Broer, A., The sum of generalized exponents and Chevalley’s restriction theorem for modules of covariants, Indag. Math. (N.S.), 6, 385-396, 1995 · Zbl 0863.20017 · doi:10.1016/0019-3577(96)81754-X
[4] de Graaf, W. A.: Lie algebras: Theory and Algorithms. North-Holland Mathematical Library, vol. 56. North-Holland Publishing Co., Amsterdam (2000) · Zbl 1122.17300
[5] Heckman, G., Schlichtkrull, H.: Harmonic Analysis and Special Functions on Symmetric Spaces Perspectives in Mathematics, vol. 16. Academic Press, San Diego (1994) · Zbl 0836.43001
[6] Helgason, S.: Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions, Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence (2000) · Zbl 0965.43007
[7] Howe, R.; Lávička, R.; Lee, ST; Souček, V., A reciprocity law and the skew Pieri rule for the symplectic group, J. Math. Phys., 58, 3, 031702, 2017 · Zbl 1472.20097 · doi:10.1063/1.4977712
[8] Humphreys, J. E.: Introduction to Lie Algebras and Representation Theory, Second Printing, revised. Graduate Texts in Mathematics, vol. 9. Springer, New York-Berlin (1978) · Zbl 0447.17001
[9] Kashiwara, M.: On crystal bases. In: Allison, B.N., Cliff, G.H. (eds.) Representations of Groups. CMS Conference Proceedings, vol. 16, pp 155-197. American Mathematical Society, Providence (1995) · Zbl 0851.17014
[10] Kass, SN, Explicit decompositions of some tensor products of modules for simple complex Lie algebras, Comm. Algebra, 15, 2251-2261, 1987 · Zbl 0637.17003 · doi:10.1080/00927878708823536
[11] Kempf, GR, Tensor products of representations, Am. J. Math., 109, 401-415, 1987 · Zbl 0634.20017 · doi:10.2307/2374562
[12] Kempf, G., A decomposition formula for representations, Nagoya Math. J., 107, 63-68, 1987 · Zbl 0602.20034 · doi:10.1017/S0027763000002543
[13] Klimyk, AU, Decomposition of a direct product of irreducible representations of a semisimple Lie algebra into a direct sum of irreducible represenations, Am. Math. Soc. Transl. Series 2, 76, 63-73, 1968 · Zbl 0228.17004 · doi:10.1090/trans2/076/04
[14] Knopf, PM, The operator \((x\frac{d}{dx})^n \)(x d dx)n and its applications to series, Math. Mag., 76, 364-371, 2003 · doi:10.1080/0025570X.2003.11953210
[15] Koike, K.; Terada, I., Young-diagrammatic methods for the representation theory of the classical groups of type Bn, Cn, Dn, J. Algebra, 107, 466-511, 1987 · Zbl 0622.20033 · doi:10.1016/0021-8693(87)90099-8
[16] Komori, Y.; Noumi, M.; Shiraishi, J., Kernel functions for difference operators of Ruijsenaars type and their applications, SIGMA Symmetry Integrability, Geom. Methods Appl., 5, Paper 054, 2009 · Zbl 1160.81393
[17] Lakshmibai, V.; Seshadri, CS, Geometry of G/P-V, J. Algebra, 100, 462-557, 1986 · Zbl 0618.14026 · doi:10.1016/0021-8693(86)90089-X
[18] Lenart, C.; Postnikov, P., A combinatorial model for crystals of Kac-Moody algebras, Trans. Am. Math. Soc., 360, 4349-4381, 2008 · Zbl 1211.17021 · doi:10.1090/S0002-9947-08-04419-X
[19] Littelmann, P., A generalization of the Littlewood-Richardson rule, J. Algebra, 130, 328-368, 1990 · Zbl 0704.20033 · doi:10.1016/0021-8693(90)90086-4
[20] Littelmann, P., A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math., 116, 329-346, 1994 · Zbl 0805.17019 · doi:10.1007/BF01231564
[21] Littelmann, P., Paths and root operators in representation theory, Ann. Math. (2), 142, 499-525, 1995 · Zbl 0858.17023 · doi:10.2307/2118553
[22] Macdonald, IG, The Poincaré series of a Coxeter group, Math. Ann., 199, 161-174, 1972 · Zbl 0286.20062 · doi:10.1007/BF01431421
[23] Macdonald, IG, Symmetric Functions and Hall Polynomials, 1995, Oxford: Clarendon Press, Oxford · Zbl 0824.05059 · doi:10.1093/oso/9780198534891.001.0001
[24] Nakashima, T., Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras, Comm. Math Phys., 154, 215-243, 1993 · Zbl 0795.17016 · doi:10.1007/BF02096996
[25] Okada, S., Pieri rules for classical groups and equinumeration between generalized oscillating tableaux and semistandard tableaux, Electron. J. Combin., 23, 4, Paper 4.43, 2016 · Zbl 1353.05124 · doi:10.37236/6214
[26] Opdam, E. M.: Lecture Notes on Dunkl Operators for Real and Complex Reflection Groups. MSJ Memoirs, vol. 8. Mathematical Society of Japan, Tokyo (2000) · Zbl 0984.33001
[27] Procesi, C., Lie Groups. An Approach Through Invariants and Representations, 2007, New York: Springer, New York · Zbl 1154.22001
[28] Reeder, M., Small representations and minuscule Richardson orbits, Int. Math. Res. Not. IMRN, 2002, 5, 257-275, 2002 · Zbl 0998.22005 · doi:10.1155/S107379280210506X
[29] Schwatt, IJ, An Introduction to the Operations with Series, 1962, New York: Chelsea Publishing Co., New York
[30] Stanley, R. P.: A survey of alternating permutations. In: Brualdi, R.A., Hedayat, S., Kharaghani, H., Khosrovshahi, G.B., Shahriari, S. (eds.) Combinatorics and Graphs. Contemporary Mathematics, vol. 531, pp 165-196. American Mathematical Society, Providence (2010) · Zbl 1231.05288
[31] Stembridge, J. R.: Computational aspects of root systems. Coxeter groups, and Weyl characters. In: Interaction of Combinatorics and Representation Theory. MSJ Memoirs, vol. 11, pp 1-38. Mathematical Society of Japan, Tokyo (2001) · Zbl 0990.05140
[32] Stembridge, JR, Combinatorial models for Weyl characters, Adv. Math., 168, 96-131, 2002 · Zbl 1035.22011 · doi:10.1006/aima.2001.2050
[33] Stembridge, JR, Multiplicity-free products and restrictions of Weyl characters, Represent. Theory, 7, 404-439, 2003 · Zbl 1060.17001 · doi:10.1090/S1088-4165-03-00150-X
[34] Stokke, A., An orthosymplectic Pieri rule, Electron. J. Combin., 25, 3, Paper No. 3.37, 2018 · Zbl 1395.05187 · doi:10.37236/7387
[35] Sundaram, S.: Tableaux in the representation theory of the classical Lie groups. In: Stanton, D. (ed.) Invariant Theory and Tableaux. IMA Volumes in Mathematics and its Applications, vol. 19, pp 191-225. Springer, New York (1990) · Zbl 0707.22004
[36] Sundaram, S., The Cauchy identity for Sp(2n), J. Combin. Theory Ser. A, 53, 209-238, 1990 · Zbl 0707.05005 · doi:10.1016/0097-3165(90)90058-5
[37] Sundaram, S., Orthogonal tableaux and an insertion algorithm for SO(2n + 1), J. Combin Theory Ser. A, 53, 239-256, 1990 · Zbl 0723.05119 · doi:10.1016/0097-3165(90)90059-6
[38] van Diejen, JF, Properties of some families of hypergeometric orthogonal polynomials in several variables, Trans. Am. Math. Soc., 351, 233-270, 1999 · Zbl 0904.33004 · doi:10.1090/S0002-9947-99-02000-0
[39] van Diejen, JF; Emsiz, E., A generalized Macdonald operator, Int. Math. Res. Not. IMRN, 2011, 15, 3560-3574, 2011 · Zbl 1236.33037 · doi:10.1093/imrn/rnq233
[40] van Diejen, JF; Emsiz, E., Pieri formulas for Macdonald’s spherical functions and polynomials, Math. Z., 269, 281-292, 2011 · Zbl 1291.05212 · doi:10.1007/s00209-010-0727-0
[41] van Diejen, JF; Emsiz, E., Difference equation for the Heckman-Opdam hypergeometric function and its confluent Whittaker limit, Adv. Math., 285, 1225-1240, 2015 · Zbl 1331.33032 · doi:10.1016/j.aim.2015.08.018
[42] van Leeuwen, M. A. A.: The Littlewood-Richardson rule, and related combinatorics. In: Interaction of Combinatorics and Representation Theory. MSJ Memoirs 11. Math. Soc. Japan, Tokyo, pp 95-145 (2001) · Zbl 0991.05101
[43] Weyman, J.: Pieri’s formulas for classical groups. In: Fossum, R., Haboush, W., Hochster, M., Lakshmibai, V. (eds.) Invariant Theory. Contemporary Mathematics, vol. 88, pp 177-184. American Mathematical Society, Providence (1989) · Zbl 0677.20027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.