×

Orthogonal polynomials of compact simple Lie groups. (English) Zbl 1250.33016

Special functions of mathematical physics are in fact matrix elements of representations of Lie groups, and recent multivariate generalizations of classical hypergeometric orthogonal polynomials are based on root systems of simple Lie groups/algebras. The authors propose a recursive algebraic construction of two infinite families of orthogonal multivariate polynomials related to orbit functions of simple Lie groups of rank \(n\). Their method is based on the decomposition of products of Weyl group orbits and on the basic properties of the characters of irreducible finite dimensional representations. The paper focuses on polynomials obtained by substitution of variables, mimicking Weyl’s method for the construction of finite-dimensional representations from \(n\) fundamental representations. A number of multivariate generalizations of classical Chebyshev polynomials are available in the literature. The authors show in all details how Chebyshev polynomials appear as particular case of multivariate polynomials. Recurrence relations are shown for the Lie groups of types \(A_1, A_2, A_3, C_2, C_3, G_2\), and \(B_3\) together with lowest polynomials.

MSC:

33C52 Orthogonal polynomials and functions associated with root systems
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33D52 Basic orthogonal polynomials and functions associated with root systems (Macdonald polynomials, etc.)
22E46 Semisimple Lie groups and their representations
33C80 Connections of hypergeometric functions with groups and algebras, and related topics
05E05 Symmetric functions and generalizations

References:

[1] N. J. Vilenkin and A. U. Klimyk, Representation of Lie Groups and Special Functions: Recent Advances, vol. 316, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995. · Zbl 0826.22001
[2] C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, Cambridge University Press, New York, NY, USA, 2008. · Zbl 1191.33006 · doi:10.1007/s11537-008-0819-3
[3] G. Heckman and H. Schlichtkrull, Harmonic Analysis and Special Functions on Symmetric Spaces, vol. 16 of Perspectives in Mathematics, Academic Press, San Diego, Calif, USA, 1994. · Zbl 0836.43001
[4] T. H. Koornwinder, “Askey-Wilson polynomials for root systems of type BC,” in Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), vol. 138 of Contemporary Mathematics, pp. 189-204, American Mathematical Society, Providence, RI, USA, 1992. · Zbl 0797.33014
[5] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Oxford University Press, Oxford, UK, 2nd edition, 1995. · Zbl 0824.05059
[6] I. G. Macdonald, “A new class of symmetric functions,” in Proceedings of the 20th Séminaire Lotharingien de Combinatoire, pp. 131-171, Institut de Recherche Mathématique Avancée, 1988. · Zbl 0962.05507
[7] I. G. Macdonald, “Orthogonal polynomials associated with root systems,” Séminaire Lotharingien de Combinatoire, vol. 45, article B45a, 40 pages, 2000. · Zbl 1032.33010
[8] E. M. Opdam, “Harmonic analysis for certain representations of graded Hecke algebras,” Acta Mathematica, vol. 175, no. 1, pp. 75-121, 1995. · Zbl 0836.43017 · doi:10.1007/BF02392487
[9] J. F. van Diejen, L. Lapointe, and J. Morse, “Bernstein-Szegö polynomials associated with root systems,” Bulletin of the London Mathematical Society, vol. 39, no. 5, pp. 837-847, 2007. · Zbl 1126.05101 · doi:10.1112/blms/bdm073
[10] L. Lapointe, A. Lascoux, and J. Morse, “Determinantal expressions for Macdonald polynomials,” International Mathematics Research Notices, vol. 1998, no. 18, pp. 957-978, 1998. · Zbl 0916.05077 · doi:10.1155/S1073792898000579
[11] L. Lapointe, A. Lascoux, and J. Morse, “Determinantal expression and recursion for Jack polynomials,” Electronic Journal of Combinatorics, vol. 7, no. 1, 7 pages, 2000. · Zbl 0934.05123
[12] J. F. van Diejen, L. Lapointe, and J. Morse, “Determinantal construction of orthogonal polynomials associated with root systems,” Compositio Mathematica, vol. 140, no. 2, pp. 255-273, 2004. · Zbl 1048.05081 · doi:10.1112/S0010437X03000149
[13] M. Lassalle and M. Schlosser, “Inversion of the Pieri formula for Macdonald polynomials,” Advances in Mathematics, vol. 202, no. 2, pp. 289-325, 2006. · Zbl 1106.33015 · doi:10.1016/j.aim.2005.03.009
[14] J. F. van Diejen and E. Emsiz, “Pieri formulas for Macdonald’s spherical functions and polynomials,” Mathematische Zeitschrift. In press. · Zbl 1291.05212 · doi:10.1007/s00209-010-0727-0
[15] M. Lassalle, “A short proof of generalized Jacobi-Trudi expansions for Macdonald polynomials,” in Jack, Hall-Littlewood and Macdonald Polynomials, vol. 417 of Contemporary Mathematics, pp. 271-280, American Mathematical Society, Providence, RI, USA, 2006. · Zbl 1133.05099
[16] M. Lassalle and M. J. Schlosser, “Recurrence formulas for Macdonald polynomials of type A,” Journal of Algebraic Combinatorics, vol. 32, no. 1, pp. 113-131, 2010. · Zbl 1196.33015 · doi:10.1007/s10801-009-0207-y
[17] M. A. Kowalski, “Orthogonality and recursion formulas for polynomials in n variables,” SIAM Journal on Mathematical Analysis, vol. 13, no. 2, pp. 316-323, 1982. · Zbl 0497.33011 · doi:10.1137/0513023
[18] T. H. Koornwinder, “Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. I-IV,” vol. 36, pp. 48-66, 357-381, 1974. · Zbl 0291.33013
[19] N. Bourbaki, Lie Groups and Lie Algebras, chapters 1-3, Springer, Berlin, Germany, 1989. · Zbl 0691.00001
[20] J. Hrivnák and J. Patera, “On discretization of tori of compact simple Lie groups,” Journal of Physics. A, vol. 42, no. 38, Article ID 385208, 26 pages, 2009. · Zbl 1181.65152 · doi:10.1088/1751-8113/42/38/385208
[21] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, New York, NY, USA, 1972. · Zbl 0254.17004
[22] S. Kass, R. V. Moody, J. Patera, and R. Slansky, Affine Lie Algebras, Weight Multiplicities, and Branching Rules, vol. 1-2 of Los Alamos Series in Basic and Applied Sciences, University of California Press, Berkeley, Calif, USA, 1990. · Zbl 0785.17028
[23] A. Klimyk and J. Patera, “Orbit functions,” Symmetry, Integrability and Geometry. Methods and Applications, vol. 2, article 006, 60 pages, 2006. · Zbl 1118.33004 · doi:10.3842/SIGMA.2006.006
[24] A. Klimyk and J. Patera, “Antisymmetric orbit functions,” Symmetry, Integrability and Geometry. Methods and Applications, vol. 3, article 023, 83 pages, 2007. · Zbl 1138.33001 · doi:10.3842/SIGMA.2007.023
[25] A. Klimyk and J. Patera, “E-orbit functions,” Symmetry, Integrability and Geometry. Methods and Applications, vol. 4, article 002, 57 pages, 2008. · Zbl 1139.33001 · doi:10.3842/SIGMA.2008.002
[26] A. Klimyk and J. Patera, “(Anti)symmetric multivariate exponential functions and corresponding Fourier transforms,” Journal of Physics. A, vol. 40, no. 34, pp. 10473-10489, 2007. · Zbl 1139.42001 · doi:10.1088/1751-8113/40/34/006
[27] M. R. Bremner, R. V. Moody, and J. Patera, Tables of Dominant Weight Multiplicities for Representations of Simple Lie Algebras, vol. 90, Marcel Dekker, New York, NY, USA, 1985. · Zbl 0624.05017
[28] R. V. Moody and J. Patera, “Fast recursion formula for weight multiplicities,” Bulletin of the American Mathematical Society, vol. 7, no. 1, pp. 237-242, 1982. · Zbl 0494.17005 · doi:10.1090/S0273-0979-1982-15021-2
[29] L. Háková, M. Larouche, and J. Patera, “The rings of n-dimensional polytopes,” Journal of Physics. A, vol. 41, no. 49, Article ID 495202, 21 pages, 2008. · Zbl 1162.52005 · doi:10.1088/1751-8113/41/49/495202
[30] M. Nesterenko, J. Patera, and A. Tereszkiewicz, “Orthogonal polynomials of compact simple Lie groups,” 34 pages, 2011, In Press, http://arxiv.org/abs/1001.3683. · Zbl 1250.33016 · doi:10.1016/j.aam.2010.11.005
[31] R. V. Moody and J. Patera, “Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups,” vol. 47, no. 3, pp. 509-535, 2011, Advances in Applied Mathematics. In press. · Zbl 1228.41025 · doi:10.1016/j.aam.2010.11.005
[32] M. Nesterenko, J. Patera, M. Szajewska, and A. Tereszkiewicz, “Orthogonal polynomials of compact simple Lie groups: branching rules for polynomials,” Journal of Physics. A, vol. 43, no. 49, Article ID 495207, 27 pages, 2010. · Zbl 1225.22013 · doi:10.1088/1751-8113/43/49/495207
[33] A. Klimyk and J. Patera, “(Anti)symmetric multivariate trigonometric functions and corresponding Fourier transforms,” Journal of Mathematical Physics, vol. 48, no. 9, Article ID 093504, 24 pages, 2007. · Zbl 1152.81513 · doi:10.1063/1.2779768
[34] K. B. Dunn and R. Lidl, “Multidimensional generalizations of the Chebyshev polynomials. I, II,” Proceedings of the Japan Academy. A, vol. 56, no. 4, pp. 154-159, 160-165, 1980. · Zbl 0452.33013
[35] M. E. Hoffman and W. D. Withers, “Generalized Chebyshev polynomials associated with affine Weyl groups,” Transactions of the American Mathematical Society, vol. 308, no. 1, pp. 91-104, 1988. · Zbl 0681.33020 · doi:10.2307/2000951
[36] H. Li and Y. Xu, “Discrete Fourier analysis on fundamental domain and simplex of Ad lattice in d-variables,” The Journal of Fourier Analysis and Applications, vol. 16, no. 3, pp. 383-433, 2010. · Zbl 1194.42006 · doi:10.1007/s00041-009-9106-9
[37] R. Lidl and C. Wells, “Chebyshev polynomials in several variables,” Journal für die Reine und Angewandte Mathematik, vol. 255, pp. 104-111, 1972. · Zbl 0238.12009
[38] T. J. Rivlin, The Chebyshev Polynomials, John Wiley & Sons, New York, NY, USA, 1974. · Zbl 0299.41015
[39] P. K. Suetin, Orthogonal Polynomials in Two Variables, vol. 3, Gordon and Breach, Amsterdam, The Netherlands, 1999. · Zbl 1058.33501
[40] M. Nesterenko, J. Patera, and A. Tereszkiewicz, “Orbit functions of SU(n) and Chebyshev polynomials,” in Proceedings of the 5th Workshop “Group Analysis of Differential Equations & Integrable Systems”, pp. 133-151, 2010. · Zbl 1234.22003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.