×

Non-oscillating power spectra in loop quantum cosmology. (English) Zbl 1479.83252

Summary: We characterize in an analytical way the general conditions that a choice of vacuum state for the cosmological perturbations must satisfy to lead to a power spectrum with no scale-dependent oscillations over time. In particular, we pay special attention to the case of cosmological backgrounds governed by effective loop quantum cosmology and in which the Einsteinian branch after the bounce suffers a pre-inflationary period of decelerated expansion. This is the case more often studied in the literature because of the physical interest of the resulting predictions. In this context, we argue that non-oscillating power spectra are optimal to gain observational access to those regimes near the bounce where loop quantum cosmology effects are non-negligible. In addition, we show that non-oscillatory spectra can indeed be consistently obtained when the evolution of the perturbations is ruled by the hyperbolic equations derived in the hybrid loop quantization approach. Moreover, in the ultraviolet regime of short wavelength scales we prove that there exists a unique asymptotic expansion of the power spectrum that displays no scale-dependent oscillations over time. This expansion would pick out the natural Poincaré and Bunch-Davies vacua in Minkowski and de Sitter spacetimes, respectively, and provides an appealing candidate for the choice of a vacuum for the perturbations in loop quantum cosmology based on physical motivations.

MSC:

83F05 Relativistic cosmology
83C45 Quantization of the gravitational field
83E05 Geometrodynamics and the holographic principle
35B20 Perturbations in context of PDEs
51B20 Minkowski geometries in nonlinear incidence geometry
83C15 Exact solutions to problems in general relativity and gravitational theory

References:

[1] Ade, P. A R.; Planck Collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13 (2016) · doi:10.1051/0004-6361/201525830
[2] Ade, P. A R.; Planck Collaboration, Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys., 594, A20 (2016) · doi:10.1051/0004-6361/201525898
[3] Liddle, A. R.; Lyth, D. H., Cosmological Inflation and Large-Scale Structure (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0952.83001 · doi:10.1017/CBO9781139175180
[4] Mukhanov, V., Physical Foundations of Cosmology (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1095.83002 · doi:10.1017/CBO9780511790553
[5] Halliwell, J. J.; Hawking, S. W., Origin of structure in the Universe, Phys. Rev. D, 31, 1777 (1985) · doi:10.1103/physrevd.31.1777
[6] Pinho, E. J C.; Pinto-Neto, N., Scalar and vector perturbations in quantum cosmological backgrounds, Phys. Rev. D, 76 (2007) · Zbl 1222.83200 · doi:10.1103/physrevd.76.023506
[7] Falciano, F. T.; Pinto-Neto, N., Scalar perturbations in scalar field quantum cosmology, Phys. Rev. D, 79 (2009) · Zbl 1222.83066 · doi:10.1103/physrevd.79.023507
[8] Ashtekar, A.; Kaminski, W.; Lewandowski, J., Quantum field theory on a cosmological, quantum space-time, Phys. Rev. D, 79 (2009) · doi:10.1103/physrevd.79.064030
[9] Kiefer, C.; Krämer, M., Quantum gravitational contributions to the cosmic microwave background anisotropy spectrum, Phys. Rev. Lett., 108 (2012) · doi:10.1103/physrevlett.108.021301
[10] Bojowald, M.; Hossain, G. M.; Kagan, M.; Shankaranarayanan, S., Anomaly freedom in perturbative loop quantum gravity, Phys. Rev. D, 78 (2008) · doi:10.1103/physrevd.78.063547
[11] Bojowald, M.; Calcagni, G.; Tsujikawa, S., Observational constraints on loop quantum cosmology, Phys. Rev. Lett., 107 (2011) · doi:10.1103/physrevlett.107.211302
[12] Cailleteau, T.; Linsefors, L.; Barrau, A., Anomaly-free perturbations with inverse-volume and holonomy corrections in loop quantum cosmology, Class. Quantum Grav., 31 (2014) · Zbl 1295.83020 · doi:10.1088/0264-9381/31/12/125011
[13] Barrau, A.; Bojowald, M.; Calcagni, G.; Grain, J.; Kagan, M., Anomaly-free cosmological perturbations in effective canonical quantum gravity, J. Cosmol. Astropart. Phys. (2015) · doi:10.1088/1475-7516/2015/05/051
[14] Wilson-Ewing, E., Testing loop quantum cosmology, C. R. Physique, 18, 207 (2017) · doi:10.1016/j.crhy.2017.02.004
[15] Gerhardt, F.; Oriti, D.; Wilson-Ewing, E., The separate Universe framework in group field theory condensate cosmology, Phys. Rev. D, 98 (2018) · doi:10.1103/physrevd.98.066011
[16] Alesci, E.; Barrau, A.; Botta, G.; Martineau, K.; Stagno, G., Phenomenology of quantum reduced loop gravity in the isotropic cosmological sector, Phys. Rev. D, 98 (2018) · doi:10.1103/physrevd.98.106022
[17] Olmedo, J.; Alesci, E., Power spectrum of primordial perturbations for an emergent Universe in quantum reduced loop gravity, J. Cosmol. Astropart. Phys. (2019) · Zbl 1542.83007 · doi:10.1088/1475-7516/2019/04/030
[18] Agullo, I.; Ashtekar, A.; Nelson, W., A quantum gravity extension of the inflationary scenario, Phys. Rev. Lett., 109 (2012) · doi:10.1103/physrevlett.109.251301
[19] Agullo, I.; Ashtekar, A.; Nelson, W., Extension of the quantum theory of cosmological perturbations to the Planck era, Phys. Rev. D, 87 (2013) · doi:10.1103/physrevd.87.043507
[20] Agullo, I.; Ashtekar, A.; Nelson, W., The pre-inflationary dynamics of loop quantum cosmology: confronting quantum gravity with observations, Class. Quantum Grav., 30 (2013) · Zbl 1267.83031 · doi:10.1088/0264-9381/30/8/085014
[21] Agullo, I.; Morris, N. A., Detailed analysis of the predictions of loop quantum cosmology for the primordial power spectra, Phys. Rev. D, 92 (2015) · doi:10.1103/physrevd.92.124040
[22] Fernández-Méndez, M.; Mena Marugán, G. A.; Olmedo, J., Hybrid quantization of an inflationary universe, Phys. Rev. D, 86 (2012) · doi:10.1103/physrevd.86.024003
[23] Fernández-Méndez, M.; Mena Marugán, G. A.; Olmedo, J., Hybrid quantization of an inflationary model: the flat case, Phys. Rev. D, 88 (2013) · doi:10.1103/physrevd.88.044013
[24] Fernández-Méndez, M.; Mena Marugán, G. A.; Olmedo, J., Effective dynamics of scalar perturbations in a flat Friedmann-Robertson-Walker spacetime in loop quantum cosmology, Phys. Rev. D, 89 (2014) · doi:10.1103/physrevd.89.044041
[25] Castelló Gomar, L.; Fernández-Méndez, M.; Mena Marugán, G. A.; Olmedo, J., Cosmological perturbations in hybrid loop quantum cosmology: Mukhanov-Sasaki variables, Phys. Rev. D, 90 (2014) · doi:10.1103/physrevd.90.064015
[26] Castelló Gomar, L.; Martín-Benito, M.; Mena Marugán, G. A., Gauge-invariant perturbations in hybrid quantum cosmology, J. Cosmol. Astropart. Phys. (2015) · doi:10.1088/1475-7516/2015/06/045
[27] Castelló Gomar, L.; Martín-Benito, M.; Mena Marugán, G. A., Quantum corrections to the Mukhanov-Sasaki equations, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.104025
[28] Benítez Martínez, F.; Olmedo, J., Primordial tensor modes of the early Universe, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.124008
[29] Castelló Gomar, L.; Mena Marugán, G. A.; Martín de Blas, D.; Olmedo, J., Hybrid loop quantum cosmology and predictions for the cosmic microwave background, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.103528
[30] Bojowald, M., Loop quantum cosmology, Living Rev. Relat., 11, 4 (2008) · Zbl 1316.83035 · doi:10.12942/lrr-2008-4
[31] Ashtekar, A.; Bojowald, M.; Lewandowski, J., Mathematical structure of loop quantum cosmology, Adv. Theor. Math. Phys., 7, 233 (2003) · doi:10.4310/atmp.2003.v7.n2.a2
[32] Ashtekar, A.; Singh, P., Loop quantum cosmology: a status report, Class. Quantum Grav., 28 (2011) · Zbl 1230.83003 · doi:10.1088/0264-9381/28/21/213001
[33] Mena Marugán, G. A., A brief introduction to loop quantum cosmology, AIP Conf. Proc., 1130, 89 (2009) · Zbl 1181.83240 · doi:10.1063/1.3146242
[34] Ashtekar, A.; Gupt, B.; Jeong, D.; Sreenath, V., Alleviating the tension in CMB using Planck-scale physics, Phys. Rev. Lett., 125 (2020) · doi:10.1103/physrevlett.125.051302
[35] Ashtekar, A.; Pawłowski, T.; Singh, P., Quantum nature of the big bang, Phys. Rev. Lett., 96 (2006) · Zbl 1153.83417 · doi:10.1103/physrevlett.96.141301
[36] Martín-Benito, M.; Mena Marugán, G. A.; Olmedo, J., Further improvements in the understanding of isotropic loop quantum cosmology, Phys. Rev. D, 80 (2009) · doi:10.1103/physrevd.80.104015
[37] Immirzi, G., Quantum gravity and Regge calculus, Nucl. Phys. B, Proc. Suppl., 57, 65 (1997) · Zbl 0976.83504 · doi:10.1016/s0920-5632(97)00354-x
[38] Taveras, V., Corrections to the Friedmann equations from loop quantum gravity for a Universe with a free scalar field, Phys. Rev. D, 78 (2008) · doi:10.1103/physrevd.78.064072
[39] Elizaga Navascués, B.; Martín de Blas, D.; Mena Marugán, G. A., Time-dependent mass of cosmological perturbations in the hybrid and dressed metric approaches to loop quantum cosmology, Phys. Rev. D, 97 (2018) · doi:10.1103/physrevd.97.043523
[40] Bunch, T. S.; Davies, P., Quantum field theory in de Sitter space: renormalization by point splitting, Proc. R. Soc. A, 360, 117 (1978) · doi:10.1098/rspa.1978.0060
[41] Castelló Gomar, L.; Cortez, J.; Martín de Blas, D.; Mena Marugán, G. A.; Velhinho, J. M., Uniqueness of the Fock quantization of scalar fields in spatially flat cosmological spacetimes, J. Cosmol. Astropart. Phys. (2012) · doi:10.1088/1475-7516/2012/11/001
[42] Cortez, J.; Mena Marugán, G. A.; Olmedo, J.; Velhinho, J. M., A uniqueness criterion for the Fock quantization of scalar fields with time-dependent mass, Class. Quantum Grav., 28 (2011) · Zbl 1223.83022 · doi:10.1088/0264-9381/28/17/172001
[43] Parker, L., Quantized fields and particle creation in expanding universes. I, Phys. Rev., 183, 105 (1969) · Zbl 0186.58603 · doi:10.1103/physrev.183.1057
[44] Lüders, C.; Roberts, J. E., Local quasiequivalence and adiabatic vacuum states, Commun. Math. Phys., 134, 29 (1990) · Zbl 0749.46045 · doi:10.1007/bf02102088
[45] Ashtekar, A.; Gupt, B., Initial conditions for cosmological perturbations, Class. Quantum Grav., 34 (2017) · Zbl 1358.83007 · doi:10.1088/1361-6382/aa52d4
[46] Ashtekar, A.; Gupt, B., Quantum gravity in the sky: interplay between fundamental theory and observations, Class. Quantum Grav., 34 (2017) · doi:10.1088/1361-6382/34/1/014002
[47] Elizaga Navascués, B.; Martín de Blas, D.; Mena Marugán, G. A., The vacuum state of primordial fluctuations in hybrid loop quantum cosmology, Universe, 4, 98 (2018) · doi:10.3390/universe4100098
[48] Martín de Blas, D.; Olmedo, J., Primordial power spectra for scalar perturbations in loop quantum cosmology, J. Cosmol. Astropart. Phys. (2016) · doi:10.1088/1475-7516/2016/06/029
[49] Ermakov, P. V., Second-order differential equations. Conditions of complete integrability, Appl. Anal. Discrete. Math., 2, 123-145 (1880) · Zbl 1199.34004 · doi:10.2298/AADM0802123E
[50] Pinney, E., The nonlinear differential equation y(x) + p(x)y + cy^−3 = 0, Proc. Am. Math. Soc., 1, 681 (1950) · Zbl 0038.24303 · doi:10.1090/s0002-9939-1950-0037979-4
[51] Mukhanov, V.; Mukhanov, V., Quantum theory of gauge-invariant cosmological perturbations, Zh. Eksp. Teor. Fiz.. Sov. Phys. JETP, 67, 1297 (1988)
[52] Sasaki, M., Gauge invariant scalar perturbations in the new inflationary Universe, Prog. Theor. Phys., 70, 394 (1983) · doi:10.1143/ptp.70.394
[53] Kodama, H.; Sasaki, M., Cosmological perturbation theory, Prog. Theor. Phys. Suppl., 78, 1 (1984) · doi:10.1143/ptps.78.1
[54] Langlois, D., Inflation and cosmological perturbations, Lect. Notes Phys., 800, 1 (2010) · Zbl 1206.83002 · doi:10.1007/978-3-642-10598-2_1
[55] Elizaga Navascués, B.; Mart��n-Benito, M.; Mena Marugán, G. A., Fermions in hybrid loop quantum cosmology, Phys. Rev. D, 96 (2017) · Zbl 1206.83002 · doi:10.1103/physrevd.96.044023
[56] Elizaga Navascués, B.; Mena Marugán, G. A.; Prado Loy, S., Backreaction of fermionic perturbations in the Hamiltonian of hybrid loop quantum cosmology, Phys. Rev. D, 98 (2018) · doi:10.1103/physrevd.98.063535
[57] Elizaga Navascués, B.; Mena Marugán, G. A., Perturbations in hybrid loop quantum cosmology: continuum limit in Fourier space, Phys. Rev. D, 98 (2018) · doi:10.1103/physrevd.98.103522
[58] Contaldi, C. R.; Peloso, M.; Kofman, L.; Linde, A., Suppressing the lower multipoles in the CMB anisotropies, J. Cosmol. Astropart. Phys. (2003) · Zbl 1027.83531 · doi:10.1088/1475-7516/2003/07/002
[59] Zhu, T.; Wang, A.; Kirsten, K.; Cleaver, G.; Sheng, Q., Universal features of quantum bounce in loop quantum cosmology, Phys. Lett. B, 773, 196 (2017) · Zbl 1027.83531 · doi:10.1016/j.physletb.2017.08.025
[60] Zhu, T.; Wang, A.; Kirsten, K.; Cleaver, G.; Sheng, Q., Pre-inflationary universe in loop quantum cosmology, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.083520
[61] Bhardwaj, A.; Copeland, E. J.; Louko, J., Inflation in loop quantum cosmology, Phys. Rev. D, 99 (2019) · doi:10.1103/physrevd.99.063520
[62] Agullo, I., Loop quantum cosmology, non-Gaussianity, and CMB power asymmetry, Phys. Rev. D, 92 (2015) · doi:10.1103/physrevd.92.064038
[63] Agullo, I.; Kranas, D.; Sreenath, V., Anomalies in the CMB from a cosmic bounce (2020) · doi:10.1103/physrevd.92.064038
[64] Bertoni, C.; Finelli, F.; Venturi, G., Adiabatic invariants and scalar fields in a de Sitter space-time, Phys. Lett. A, 237, 331 (1998) · Zbl 1044.81680 · doi:10.1016/s0375-9601(97)00707-x
[65] Hawkins, R. M.; Lidsey, J. E., Ermakov-Pinney equation in scalar field cosmologies, Phys. Rev. D, 66 (2002) · Zbl 1044.81680 · doi:10.1103/physrevd.66.023523
[66] Kamenshchik, A. Y.; Tronconi, A.; Venturi, G., Inflation and quantum gravity in a Born-Oppenheimer context, Phys. Lett. B, 726, 518 (2013) · Zbl 1311.83019 · doi:10.1016/j.physletb.2013.08.067
[67] Fahn, M. J.; Giesel, K.; Kobler, M., Dynamical properties of the Mukhanov-Sasaki Hamiltonian in the context of adiabatic vacua and the Lewis-Riesenfeld invariant, Universe, 5, 170 (2019) · Zbl 1311.83019 · doi:10.3390/universe5070170
[68] Milne, W. E., The numerical determination of characteristic numbers, Phys. Rev., 35, 863 (1930) · doi:10.1103/physrev.35.863
[69] Elizaga Navascués, B.; Mena Marugán, G. A.; Thiemann, T., Hamiltonian diagonalization in hybrid quantum cosmology, Class. Quantum Grav., 36, 18 (2019) · JFM 56.0765.04 · doi:10.1088/1361-6382/ab32af
[70] Brandenberger, R.; Peter, P., Bouncing cosmologies: progress and problems, Found. Phys., 47, 797 (2017) · Zbl 1478.83245 · doi:10.1007/s10701-016-0057-0
[71] Brandenberger R and Peter P 2017 Bouncing cosmologies: progress and problems Found. Phys.47 797 · Zbl 1372.83002 · doi:10.1007/s10701-016-0057-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.