×

Hamiltonian formalism and gauge-fixing conditions for cosmological perturbation theory. (English) Zbl 1478.83256

Summary: We apply the Dirac procedure for constrained systems to the Arnowitt-Deser-Misner formalism linearized around the Friedmann-Lemaitre universe. We explain and employ some basic concepts such as Dirac observables, Dirac brackets, gauge-fixing conditions, reduced phase space, physical Hamiltonian and physical dynamics. In particular, we elaborate on the key concept which is the canonical isomorphism between different gauge-fixing surfaces. We apply our formalism to describe the reduced phase space of cosmological perturbations in some popular in the literature gauges. Our formalism is first developed for the universe with a single fluid and then extended to the multi-fluid case. The obtained results are a starting point for complete quantization of the cosmological perturbations and the cosmological background. Our approach may be used in future to derive the reduced phase space of higher order perturbations and in more generic cosmological spacetimes.

MSC:

83F05 Relativistic cosmology
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83C25 Approximation procedures, weak fields in general relativity and gravitational theory
70H05 Hamilton’s equations
70H45 Constrained dynamics, Dirac’s theory of constraints
70G10 Generalized coordinates; event, impulse-energy, configuration, state, or phase space for problems in mechanics
81S08 Canonical quantization

References:

[1] Anderegg S and Mukhanov V F 1994 Path integral quantization of cosmological perturbations Phys. Lett. B 331 30-8 · doi:10.1016/0370-2693(94)90939-3
[2] Langlois D 1994 Hamiltonian formalism and gauge invariance for linear perturbations in inflation Class. Quantum Grav.11 389-407 · Zbl 1222.83048 · doi:10.1088/0264-9381/11/2/011
[3] Arnowitt R L, Deser S and Misner C W 2008 The dynamics of general relativity Gen. Relativ. Gravit.40 1997-2027 · Zbl 1152.83320 · doi:10.1007/s10714-008-0661-1
[4] Goldberg J, Newman E T and Rovelli C 1991 On hamiltonian systems with first-class constraints J. Math. Phys.32 2739-43 · Zbl 0778.58024 · doi:10.1063/1.529065
[5] Mukhanov V F, Feldman H A and Brandenberger R H 1992 Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions Phys. Rep.215 203-333 · doi:10.1016/0370-1573(92)90044-Z
[6] Dirac P A M 1964 Lectures on Quantum Mechanics vol 2 (New York: Belfer Graduate School of Science)
[7] Giesel K and Herzog A 2018 Gauge invariant canonical cosmological perturbation theory with geometrical clocks in extended phase-space—a review and applications Int. J. Mod. Phys. D 27 1830005 · Zbl 1430.83005 · doi:10.1142/S0218271818300057
[8] Giesel K, Herzog A and Singh P 2018 Gauge invariant variables for cosmological perturbation theory using geometrical clocks Class. Quantum Grav.35 155012 · Zbl 1409.83234 · doi:10.1088/1361-6382/aacda2
[9] Kristina Giesel 2008 Introduction to Dirac observables Int. J. Mod. Phys. A 23 1190-9 · Zbl 1156.81037 · doi:10.1142/S0217751X08040056
[10] Peter P, Pinho E and Pinto-Neto N 2005 Tensor perturbations in quantum cosmological backgrounds J. Cosmol. Astropart. Phys.JCAP07(2005) 014 · Zbl 1236.83049 · doi:10.1088/1475-7516/2005/07/014
[11] Pinho E J C and Pinto-Neto N 2007 Scalar and vector perturbations in quantum cosmological backgrounds Phys. Rev. D 76 023506 · Zbl 1222.83200 · doi:10.1103/PhysRevD.76.023506
[12] Peter P, Pinto-Neto N and Vitenti S D P 2016 Quantum cosmological perturbations of multiple fluids Phys. Rev. D 93 023520 · doi:10.1103/PhysRevD.93.023520
[13] Domènech G and Sasaki M 2018 Hamiltonian approach to second order gauge invariant cosmological perturbations Phys. Rev. D 97 023521 · doi:10.1103/PhysRevD.97.023521
[14] Schutz B F 1970 Perfect fluids in general relativity: velocity potentials and a variational principle Phys. Rev. D 2 2762-73 · Zbl 1227.83022 · doi:10.1103/PhysRevD.2.2762
[15] Schutz B F 1971 Hamiltonian theory of a relativistic perfect fluid Phys. Rev. D 4 3559-66 · doi:10.1103/PhysRevD.4.3559
[16] Demaret J and Moncrief V 1980 Hamiltonian formalism for perfect fluids in general relativity Phys. Rev. D 21 2785-93 · doi:10.1103/PhysRevD.21.2785
[17] Dapor A, Lewandowski J and Puchta J 2013 QFT on quantum spacetime: a compatible classical framework Phys. Rev. D 87 104038 · doi:10.1103/PhysRevD.87.104038
[18] Dapor A, Lewandowski J and Puchta J 2013 Phys. Rev. D 87 129904 (erratum) · doi:10.1103/PhysRevD.87.129904
[19] Isham C J 1992 Canonical quantum gravity and the problem of time 19th Int. Colloquium on Group Theoretical Methods in Physics(Salamanca, Spain, 29 June-5 July 1992) pp 0157-288
[20] Kuchar K 2011 Time and interpretations of quantum gravity Int. J. Mod. Phys. D 20 3-86 · Zbl 1254.83002 · doi:10.1142/S0218271811019347
[21] Małkiewicz P 2015 Multiple choices of time in quantum cosmology Class. Quantum Grav.32 135004 · Zbl 1327.83036 · doi:10.1088/0264-9381/32/13/135004
[22] Małkiewicz P 2017 What is dynamics in quantum gravity? Class. Quantum Grav.34 205001 · Zbl 1380.83097 · doi:10.1088/1361-6382/aa89f6
[23] Małkiewicz P 2017 Clocks and dynamics in quantum models of gravity Class. Quantum Grav.34 145012 · Zbl 1373.83046 · doi:10.1088/1361-6382/aa7868
[24] Małkiewicz P and Miroszewski A 2017 Internal clock formulation of quantum mechanics Phys. Rev. D 96 046003 · doi:10.1103/PhysRevD.96.046003
[25] Kuchar K 1972 A bubble—time canonical formalism for geometrodynamics J. Math. Phys.13 768-81 · doi:10.1063/1.1666050
[26] Uggla C and Wainwright J 2019 Second order cosmological perturbations: simplified gauge change formulas Class. Quantum Grav.36 035004 · Zbl 1475.83149 · doi:10.1088/1361-6382/aaf924
[27] Malik K A and Wands D 2009 Cosmological perturbations Phys. Rep.475 1-51 · doi:10.1016/j.physrep.2009.03.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.