×

Quasi-linear compressed sensing. (English) Zbl 1380.94050

Summary: Inspired by significant real-life applications, particularly sparse phase retrieval and sparse pulsation frequency detection in asteroseismology, we investigate a general framework for compressed sensing, where the measurements are quasi-linear. We formulate natural generalizations of the well-known restricted isometry property (RIP) toward nonlinear measurements, which allow us to prove both unique identifiability of sparse signals as well as the convergence of recovery algorithms to compute them efficiently. We show that for certain randomized quasi-linear measurements, including Lipschitz perturbations of classical RIP matrices and phase retrieval from random projections, the proposed restricted isometry properties hold with high probability. We analyze a generalized orthogonal least squares (OLS) under the assumption that magnitudes of signal entries to be recovered decay quickly. Greed is good again, as we show that this algorithm performs efficiently in phase retrieval and asteroseismology. For situations where the decay assumption on the signal does not necessarily hold, we propose two alternative algorithms, which are natural generalizations of the well-known iterative hard- and soft-thresholding. While these algorithms are rarely successful for the mentioned applications, we show their strong recovery guarantees for quasi-linear measurements which are Lipschitz perturbations of RIP matrices.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
47J25 Iterative procedures involving nonlinear operators

Software:

PhaseLift; GESPAR; CoSaMP

References:

[1] C. Aerts, J. Christensen-Dalsgaard, and D. W. Kurtz, {\it Asteroseismology}, Springer, Berlin, 2010. · Zbl 1197.85009
[2] C. Bachoc and M. Ehler, {\it Signal Reconstruction from the Magnitude of Subspace Components}, preprint, http://arxiv.org/abs/1209.5986arXiv:1209.5986, 2013. · Zbl 1359.94057
[3] B. Bah and J. Tanner, {\it Improved bounds on restricted isometry constants for Gaussian matrices}, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2882-2898. · Zbl 1208.60026
[4] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, {\it A simple proof of the restricted isometry property for random matrices}, Constr. Approx., 28 (2008), pp. 253-263. · Zbl 1177.15015
[5] F. Barning, {\it The numerical analysis of the light-curve of 12 lacertae}, Bull. Astron. Inst. Netherlands, 17 (1963), pp. 22-28.
[6] H. H. Bauschke, P. L. Combettes, and D. R. Luke, {\it Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization}, J. Opt. Soc. Amer. A, 19 (2002), pp. 1334-1345.
[7] A. Beck and Y. C. Eldar, {\it Sparsity constrained nonlinear optimization: Optimality conditions and algorithms}, SIAM J. Optim., 23 (2013), pp. 1480-1509. · Zbl 1295.90051
[8] J. D. Blanchard, C. Cartis, J. Tanner, and A. Thompson, {\it Phase transitions for greedy sparse approximation algorithms}, Appl. Comput. Harmon. Anal., 30 (2011), pp. 188-203. · Zbl 1229.94003
[9] T. Blumensath, {\it Compressed Sensing with Nonlinear Observations and Related Nonlinear Optimisation Problems}, preprint, http://arxiv.org/abs/1205.1650v1arXiv:1205.1650v1, 2012.
[10] T. Blumensath and M. E. Davies, {\it Gradient pursuit for non-linear sparse signal modelling}, in Proceedings of the European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland, 2008.
[11] T. Blumensath and M. E. Davies, {\it Iterative hard thresholding for compressed sensing}, Appl. Comput. Harmon. Anal., 27 (2009), pp. 265-274. · Zbl 1174.94008
[12] E. J. Candes, J. Romberg, and T. Tao, {\it Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information}, IEEE Trans. Inform. Theory, 52 (2006), pp. 489-509. · Zbl 1231.94017
[13] E. J. Candès, J. Romberg, and T. Tao, {\it Stable signal recovery from incomplete and inaccurate measurements}, Comm. Pure Appl. Math., 59 (2006), pp. 1207-1223. · Zbl 1098.94009
[14] E. J. Candès, T. Strohmer, and V. Voroninski, {\it PhaseLift: Exact and stable signal recovery from magnitude measurements via convex programming}, Comm. Pure Appl. Math., 66 (2013), pp. 1241-1274. · Zbl 1335.94013
[15] E. J. Candès and T. Tao, {\it Decoding by linear programming}, IEEE Trans. Inform. Theory, 51 (2005), pp. 4203-4215. · Zbl 1264.94121
[16] E. J. Candès and T. Tao, {\it Near-optimal signal recovery from random projections: Universal encoding strategies}, IEEE Trans. Inform. Theory, 52 (2006), pp. 5406-5425. · Zbl 1309.94033
[17] A. Cohen, R. A. DeVore, G. Petrova, and P. Wojtaszczyk, {\it Finding the minimum of a function}, Methods Appl. Anal., 20 (2013), pp. 365-382. · Zbl 1297.65068
[18] S. Dasgupta and A. Gupta, {\it An elementary proof of a theorem of Johnson and Lindenstrauss}, Random Structures Algorithms, 22 (2003), pp. 60-65. · Zbl 1018.51010
[19] I. Daubechies, M. Defrise, and C. DeMol, {\it An iterative thresholding algorithm for linear inverse problems with a sparsity constraint}, Comm. Pure Appl. Math., 57 (2004), pp. 1413-1541. · Zbl 1077.65055
[20] M. A. Davenport and M. B. Wakin, {\it Analysis of orthogonal matching pursuit using the restricted isometry property}, IEEE Trans. Inform. Theory, 56 (2010), pp. 4395-4401. · Zbl 1366.94093
[21] R. A. DeVore, {\it Nonlinear approximation}, in Acta Numerica, Acta Numer. 7, Cambridge University Press, Cambridge, UK, 1998, pp. 51-150. · Zbl 0931.65007
[22] D. L. Donoho, {\it Compressed sensing}, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289-1306. · Zbl 1288.94016
[23] J. Drenth, {\it Principles of Protein X-Ray Crystallography}, Springer, New York, 2010.
[24] Y. C. Eldar and S. Mendelson, {\it Phase Retrieval: Stability and Recovery Guarantees}, preprint, http://arxiv.org/abs/1211.0872arXiv:1211.0872, 2012. · Zbl 06298184
[25] J. R. Fienup, {\it Phase retrieval algorithms: A comparison}, Applied Optics, 21 (1982), pp. 2758-2769.
[26] M. Fornasier, ed., {\it Theoretical Foundations and Numerical Methods for Sparse Recovery}, Radon Ser. Comput. Appl. Math. 9, De Gruyter, Berlin, 2010. · Zbl 1208.65089
[27] M. Fornasier and H. Rauhut, {\it Iterative thresholding algorithms}, Appl. Comput. Harmon. Anal., 25 (2008), pp. 187-208. · Zbl 1149.65038
[28] M. Fornasier and H. Rauhut, {\it Recovery algorithms for vector-valued data with joint sparsity constraints}, SIAM J. Numer. Anal., 46 (2008), pp. 577-613. · Zbl 1211.65066
[29] S. Foucart and H. Rauhut, {\it A Mathematical Introduction to Compressive Sensing}, Birkhäuser/Springer, New York, 2013. · Zbl 1315.94002
[30] R. W. Gerchberg and W. O. Saxton, {\it A practical algorithm for the determination of the phase from image and diffraction plane pictures}, Optik, 35 (1972), pp. 237-246.
[31] D. Goldfarb and S. Ma, {\it Convergence of Fixed-Point Continuation Algorithms for Matrix Rank Minimization}, preprint, http://arxiv.org/abs/0906.3499v4arXiv:0906.3499v4, 2010. · Zbl 1219.90195
[32] X. Li and V. Voroninski, {\it Sparse signal recovery from quadratic measurements via convex programming}, SIAM J. Math. Anal., 45 (2013), pp. 3019-3033. · Zbl 1320.94023
[33] S. Mallat and Z. Zhang, {\it Matching pursuits with time-frequency dictionaries}, IEEE Trans. Signal Process., 41 (1993), pp. 3397-3415. · Zbl 0842.94004
[34] D. Needell and J. Tropp, {\it CoSaMP: Iterative signal recovery from incomplete and inaccurate samples}, Appl. Comput. Harmon. Anal., 28 (2009), pp. 301-321. · Zbl 1163.94003
[35] J. Nocedal and S. Wright, {\it Numerical Optimization}, 2nd ed., Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006. · Zbl 1104.65059
[36] H. Ohlsson, A. Y. Yang, R. Dong, and S. S. Sastry, {\it Compressive Phase Retrieval from Squared Output Measurements via Semidefinite Programming}, preprint, http://arxiv.org/abs/1111. 6323v3arXiv:1111. 6323v3, 2012.
[37] H. Ohlsson and Y. Eldar, {\it On Conditions for Uniqueness in Sparse Phase Retrieval}, preprint, http://arxiv.org/abs/1308.5447arXiv:1308.5447, 2013.
[38] M. R. Osborne, {\it Finite Algorithms in Optimization and Data Analysis}, Wiley Series Probab. Stat., Wiley, Hoboken, NJ, 1985. · Zbl 0573.65044
[39] G. Pfander, H. Rauhut, and J. Tropp, {\it The restricted isometry property for time-frequency structured random matrices}, Probab. Theory Related Fields, 156 (2013), pp. 707-737. · Zbl 1284.60018
[40] R. Ramlau and G. Teschke, {\it A projection iteration for nonlinear operator equations with sparsity constraints}, Numer. Math., 104 (2006), pp. 177-203. · Zbl 1101.65056
[41] R. Ramlau and G. Teschke, {\it An iterative algorithm for nonlinear inverse problems with joint sparsity constraints in vector valued regimes and an application to color image inpainting}, Inverse Problems, 23 (2007), pp. 1851-1870. · Zbl 1131.47055
[42] H. Rauhut, J. Romberg, and J. Tropp, {\it Restricted isometries for partial random circulant matrices}, Appl. Comput. Harmon. Anal., 32 (2012), pp. 242-254. · Zbl 1245.15040
[43] H. Rauhut, K. Schnass, and P. Vandergheynst, {\it Compressed sensing and redundant dictionaries}, IEEE Trans. Inform. Theory, 54 (2008), pp. 2210-2219. · Zbl 1332.94022
[44] B. Recht, M. Fazel, and P. Parillo, {\it Guaranteed minimum rank solutions of linear matrix equations via nuclear norm minimization}, SIAM Rev., 52 (2010), pp. 471-501. · Zbl 1198.90321
[45] B. Seifert, H. Stolz, M. Donatelli, D. Langemann, and M. Tasche, {\it Multilevel Gauss-Newton methods for phase retrieval problems}, J. Phys. A, 39 (2006), pp. 4191-4206. · Zbl 1099.78012
[46] Y. Shechtman, A. Beck, and Y. C. Eldar, {\it GESPAR: Efficient Phase Retrieval of Sparse Signals}, preprint, \burlalthttp://arxiv.org/abs/1301.1018arXiv:1301.1018, 2013. · Zbl 1394.94522
[47] J. Sigl, {\it Quasilinear Compressed Sensing}, Master’s thesis, Technische Universität München, Munich, Germany, 2013.
[48] C. Soussen, R. Gribonval, J. Idier, and C. Herzet, {\it Sparse Recovery Conditions for Orthogonal Least Squares}, Tech. report, http://arxiv.org/abs/1111.0522v1arXiv:1111.0522v1, 2011. · Zbl 1364.94128
[49] V. N. Temlyakov and P. Zheltov, {\it On performance of greedy algorithms}, J. Approx. Theory, 163 (2011), pp. 1134-1145. · Zbl 1230.41005
[50] J. A. Tropp, {\it Greed is good: Algorithmic results for sparse approximation}, IEEE Trans. Inform. Theory, 50 (2004), pp. 2331-2242. · Zbl 1288.94019
[51] R. Vershynin, {\it Introduction to the non-asymptotic analysis of random matrices}, in Compressed Sensing, Theory and Applications, Y. Eldar and G. Kutyniok, eds., Cambridge University Press, Cambridge, UK, 2012, pp. 210-268.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.