×

Exponential stability of an incompressible non-Newtonian fluid with delay. (English) Zbl 1418.76010

Summary: The existence and uniqueness of stationary solutions to an incompressible non-Newtonian fluid are first established. The exponential stability of steady-state solutions is then analyzed by means of four different approaches. The first is the classical Lyapunov function method, while the second one is based on a Razumikhin type argument. Then, a method relying on the construction of Lyapunov functionals and another one using a Gronwall-like lemma are also exploited to study the stability, respectively. Some comments concerning several open research directions about this model are also included.

MSC:

76A05 Non-Newtonian fluids
35B35 Stability in context of PDEs
35Q35 PDEs in connection with fluid mechanics
37L15 Stability problems for infinite-dimensional dissipative dynamical systems
Full Text: DOI

References:

[1] H.-O. Bae, Existence, regularity, and decay rate of solutions of non-Newtonian flow, J. Math. Anal. Appl., 231, 467-491 (1999) · Zbl 0920.76007 · doi:10.1006/jmaa.1998.6242
[2] H. Bellout; F. Bloom; J. Nečas, Young measure-valued solutions for non-Newtonian incompressible fluids, Comm. Partial Differential Equations, 19, 1763-1803 (1994) · Zbl 0840.35079 · doi:10.1080/03605309408821073
[3] F. Bloom; W. Hao, Regularization of a non-Newtonian system in an unbounded channel: existence and uniqueness of solutions, Nonlinear Anal., 44, 281-309 (2001) · Zbl 0993.76004 · doi:10.1016/S0362-546X(99)00264-3
[4] T. Caraballo; A. M. Márquez-Durán, Existence, uniqueness and asymptotic behavior of solutions for a nonclassical diffusion equation with delay, Dyn. Partial Differ. Equ., 10, 267-281 (2013) · Zbl 1278.35136 · doi:10.4310/DPDE.2013.v10.n3.a3
[5] T. Caraballo; J. Real; L. Shaikhet, Method of Lyapunov functionals construction in stability of delay evolution equations, J. Math. Anal. Appl., 334, 1130-1145 (2007) · Zbl 1178.34087 · doi:10.1016/j.jmaa.2007.01.038
[6] T. Caraballo; X. Han, A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S, 8, 1079-1101 (2015) · Zbl 1406.35221 · doi:10.3934/dcdss.2015.8.1079
[7] T. Caraballo; J. A. Langa; J. C. Robinson, Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260, 421-438 (2001) · Zbl 0997.34073 · doi:10.1006/jmaa.2000.7464
[8] T. Caraballo, A. M. Márquez-Durán and F. Rivero, Well-posedness and asymptotic behavior of a nonclassical nonautonomous diffusion equation with delay, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1540021, 11pp. · Zbl 1334.35373
[9] H. Chen, Asymptotic behavior of stochastic two-dimensional Navier-Stokes equations with delays, Proc. Indian Acad. Sci. Math. Sci., 122, 283-295 (2012) · Zbl 1255.60104 · doi:10.1007/s12044-012-0071-x
[10] J. García-Luengo; P. Marín-Rubio; J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity, Adv. Nonlinear Stud., 13, 331-357 (2013) · Zbl 1304.35117
[11] B. Guo, G. Lin and Y. Shang, Non-Newtonian Fluids Dynamical Systems, National Defense Industry Press, in Chinese, 2006.
[12] B. Guo; C. Guo; J. Zhang, Martingale and stationary solutions for stochastic non-Newtonian fluids, Differential Integral Equations, 23, 303-326 (2010) · Zbl 1240.60184
[13] J. U. Jeong; J. Park, Pullback attractors for a 2D-non-autonomous incompressible non-Newtonian fluid with variable delays, Discrete Contin. Dyn. Syst. Ser. B, 21, 2687-2702 (2016) · Zbl 1350.35035 · doi:10.3934/dcdsb.2016068
[14] V. Kolmanovskii and L. Shaikhet, Construction of Lyapunov functionals for stochastic hereditary systems: a survey of some recent results, Math. Comput. Modelling, 36 (2002), 691-716. Lyapunov’s methods in stability and control. · Zbl 1029.93057
[15] V. Kolmanovskii and L. Shaikhet, General method of Lyapunov functionals construction for stability investigation of stochastic difference equations, In Dynamical Systems and Applications, volume 4 of World Sci. Ser. Appl. Anal., pages 397-439. World Sci. Publ., River Edge, NJ, 1995. · Zbl 0846.93083
[16] O. Ladyzhenskaya, New Equations for the Description of the Viscous Incompressible Fluids and Solvability in the Large of the Boundary Value Problems for Them, in: Boundary Value Problem of Mathematical Physics, American Mathematical Society, Providence, 1970.
[17] L. Liu; T. Caraballo, Dynamics of a non-autonomous incompressible non-newtonian fluid with delay, Dynamics of PDE, 14, 375-402 (2017) · Zbl 1382.35229 · doi:10.4310/DPDE.2017.v14.n4.a4
[18] J. Málek, J. Nečas, M. Rokyta and M. Ružička, Weak and Measure-Valued Solutions to Evolutionary PDEs, volume 13 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London, 1996. · Zbl 0851.35002
[19] P. Marín-Rubio; J. Real; J. Valero, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case, Nonlinear Anal., 74, 2012-2030 (2011) · Zbl 1218.35045 · doi:10.1016/j.na.2010.11.008
[20] L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Difference Equations, Springer, London, 2011. · Zbl 1255.93001
[21] L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional Differential Equations, Springer, Cham, 2013. · Zbl 1277.34003
[22] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, volume 68 of Applied Mathematical Sciences. Springer-Verlag, New York, second edition, 1997. · Zbl 0871.35001
[23] C. Zhao; Y. Li, H^2-compact attractor for a non-Newtonian system in two-dimensional unbounded domains, Nonlinear Anal., 56, 1091-1103 (2004) · Zbl 1073.35044 · doi:10.1016/j.na.2003.11.006
[24] C. Zhao; S. Zhou, Pullback attractors for a non-autonomous incompressible non-Newtonian fluid, J. Differential Equations, 238, 394-425 (2007) · Zbl 1152.35012 · doi:10.1016/j.jde.2007.04.001
[25] C. Zhao; S. Zhou; Y. Li, Trajectory attractor and global attractor for a two-dimensional incompressible non-Newtonian fluid, J. Math. Anal. Appl., 325, 1350-1362 (2007) · Zbl 1112.35032 · doi:10.1016/j.jmaa.2006.02.069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.