×

Small time asymptotics for SPDEs with locally monotone coefficients. (English) Zbl 1464.60066

Summary: This work aims to prove the small time large deviation principle (LDP) for a class of stochastic partial differential equations (SPDEs) with locally monotone coefficients in generalized variational framework. The main result could be applied to demonstrate the small time LDP for various quasilinear and semilinear SPDEs such as stochastic porous medium equations, stochastic \(p\)-Laplace equations, stochastic Burgers type equation, stochastic 2D Navier-Stokes equation, stochastic power law fluid equation and stochastic Ladyzhenskaya model. In particular, our small time LDP result seems to be new in the case of general quasilinear SPDEs with multiplicative noise.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60F10 Large deviations
76S05 Flows in porous media; filtration; seepage
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35K57 Reaction-diffusion equations

References:

[1] H. Abdallah, A Varadhan type estimate on manifolds with time-dependent metrics and constant volume, J. Math. Pures Appl., 99, 409-418 (2013) · Zbl 1282.58015 · doi:10.1016/j.matpur.2012.09.007
[2] S. Aida and H. Kawabi, Short time asymptotics of a certain infinite dimensional diffusion process, Stochastic Analysis and Related Topics, VII (Kusadasi, 1998), Progr. Probab., Birkh¨auser Boston, Boston, MA, 48 (1998), 77-124. · Zbl 0976.60077
[3] S. Aida; T. S. Zhang, On the small time asymptotics of diffusion processes on path groups, Potential Anal., 16, 67-78 (2002) · Zbl 0993.60026 · doi:10.1023/A:1024868720071
[4] T. Ariyoshi; M. Hino, Small-time asymptotic estimates in local Dirichlet spaces, Electron. J. Probab., 10, 1236-1259 (2005) · Zbl 1109.60063 · doi:10.1214/EJP.v10-286
[5] M. Avellaneda; D. Boyer-Olson; J. Busca; P. Friz, Application of large deviation methods to the pricing of index options in finance, C. R. Math. Acad. Sci. Paris, 336, 263-266 (2003) · Zbl 1053.91057 · doi:10.1016/S1631-073X(03)00032-3
[6] H. Berestycki; J. Busca; I. Florent, Computing the implied volatility in stochastic volatility models, Comm. Pure Appl. Math., 57, 1352-1373 (2004) · Zbl 1181.91356 · doi:10.1002/cpa.20039
[7] Z. Brzézniak, On stochastic convolution in Banach spaces and applications, Stochastics Stochastics Rep., 61, 245-295 (1997) · Zbl 0891.60056 · doi:10.1080/17442509708834122
[8] Z. Brzézniak; S. Peszat, Space-time continuous solutions to SPDE’s driven by a homogeneous Wiener process, Studia Math., 137, 261-299 (1999) · Zbl 0944.60075 · doi:10.4064/sm-137-3-261-299
[9] Z. Brzeźniak; W. Liu; J. H. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, Nonlinear Anal. Real World Appl., 17, 283-310 (2014) · Zbl 1310.60091 · doi:10.1016/j.nonrwa.2013.12.005
[10] A. Budhiraja; P. Dupuis, A variational representation for positive functionals of infinite dimensional Brownian motion, Probab. Math. Statist., 20, 39-61 (2000) · Zbl 0994.60028
[11] A. Budhiraja; P. Dupuis; V. Maroulas, Large deviations for infinite dimensional stochastic dynamical systems, Ann. Probab., 36, 1390-1420 (2008) · Zbl 1155.60024 · doi:10.1214/07-AOP362
[12] Y. Chen; H. J. Gao; L. L. Fan, Well-posedness and the small time large deviations of the stochastic integrable equation governing short-waves in a long-wave model, Nonlinear Anal. Real World Appl., 29, 38-57 (2016) · Zbl 1382.35344 · doi:10.1016/j.nonrwa.2015.10.009
[13] Z.-Q. Chen; S. Z. Fang; T. S. Zhang, Small time asymptotics for Brownian motion with singular drift, Proc. Amer. Math. Soc., 147, 3567-3578 (2019) · Zbl 1447.60093 · doi:10.1090/proc/14511
[14] P. L. Chow, Large deviation problem for some parabolic Itô equations, Comm. Pure Appl. Math., 45, 97-120 (1992) · Zbl 0739.60055 · doi:10.1002/cpa.3160450105
[15] I. Chueshov; A. Millet, Stochastic 2D hydrodynamical type systems: Well posedness and large deviations, Appl. Math. Optim., 61, 379-420 (2010) · Zbl 1196.49019 · doi:10.1007/s00245-009-9091-z
[16] E. A. Coayla-Teran, P. M. Dias de Magalhães and J. Ferreira, Existence of optimal controls for SPDE with locally monotone coefficients, International J. Control, (2018). · Zbl 1443.93138
[17] B. Davis, On the \(L^p\)-norms of stochastic integrals and other martingales, Duke Math. J., 43, 697-704 (1976) · Zbl 0349.60061 · doi:10.1215/S0012-7094-76-04354-4
[18] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett, Boston, MA, 1993. · Zbl 0793.60030
[19] Z. Dong; R. Zhang, On the small-time asymptotics of 3D stochastic primitive equations, Math. Methods Appl. Sci., 41, 6336-6357 (2018) · Zbl 1401.60045 · doi:10.1002/mma.5142
[20] S. Fang; T. S. Zhang, On the small time behavior of Ornstein-Uhlenbeck processes with unbounded linear drifts, Probab. Theory Related Fields, 114, 487-504 (1999) · Zbl 0932.60071 · doi:10.1007/s004400050232
[21] J. Feng; J.-P. Fouque; R. Kumar, Small-time asymptotics for fast mean-reverting stochastic volatility models, Ann. Appl. Probab., 22, 1541-1575 (2012) · Zbl 1266.60049 · doi:10.1214/11-AAP801
[22] M. Forde; A. Jacquier, Small-time asymptotics for an uncorrelated local-stochastic volatility model, Appl. Math. Finance, 18, 517-535 (2011) · Zbl 1246.91129 · doi:10.1080/1350486X.2011.591159
[23] M. Forde; A. Jacquier; R. Lee, The small-time smile and term structure of implied volatility under the Heston model, SIAM J. Financial Math., 3, 690-708 (2012) · Zbl 1273.91461 · doi:10.1137/110830241
[24] J. Frehse; M. Růžička, Non-homogeneous generalized Newtonian fluids, Math. Z., 260, 355-375 (2008) · Zbl 1143.76007 · doi:10.1007/s00209-007-0278-1
[25] M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, Grundlehren der Mathematischen Wissenschaften, 260. Springer-Verlag, New York, 1984. · Zbl 0522.60055
[26] B. Gess, Random attractors for singular stochastic evolution equations, J. Differential Equations, 255, 524-559 (2013) · Zbl 1338.37120 · doi:10.1016/j.jde.2013.04.023
[27] B. Gess, Random attractors for degenerate stochastic partial differential equations, J. Dynam. Differential Equations, 25, 121-157 (2013) · Zbl 1264.37047 · doi:10.1007/s10884-013-9294-5
[28] B. Gess; W. Liu; M. Röckner, Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. Differential Equations, 251, 1225-1253 (2011) · Zbl 1228.35062 · doi:10.1016/j.jde.2011.02.013
[29] B. Gess, W. Liu and A. Schenke, Random attractors for locally monotone stochastic partial differential equations, J. Differential Equations, 268 (2020), In press. · Zbl 1507.37103
[30] B. L. Guo; C. X. Guo; J. J. Zhang, Martingale and stationary solutions for stochastic non-Newtonian fluids, Differential Integral Equations, 23, 303-326 (2010) · Zbl 1240.60184
[31] M. Hino; K. Matsuura, An integrated version of Varadhan’s asymptotics for lower-order perturbations of strong local Dirichlet forms, Potential Anal., 48, 257-300 (2018) · Zbl 1388.31013 · doi:10.1007/s11118-017-9634-x
[32] M. Hino; J. A. Ramirez, Small-time Gaussian behaviour of symmetric diffusion semigroup, Ann. Probab., 31, 1254-1295 (2003) · Zbl 1085.31008 · doi:10.1214/aop/1055425779
[33] T. Jegaraj, Small time asymptotics for stochastic evolution equations, J. Theoret. Probab., 24, 756-788 (2011) · Zbl 1245.60035 · doi:10.1007/s10959-010-0336-1
[34] N. V. Krylov and B. L. Rozovskii, Stochastic evolution equations, Stochastic Differential Equations: Theory and Applications, 1-69, Interdiscip. Math. Sci., Vol. 2, World Sci. Publ., Hackensack, NJ, 2007. · Zbl 1130.60069
[35] O. A. Ladyzhenskaya, New equations for the description of the viscous incompressible fluids and solvability in large of the boundary value problems for them, Volume V of Boundary Value Problems of Mathematical Physics, Amer. Math. Soc., Providence, 1970.
[36] S. H. Li; W. Liu; Y. C. Xie, Large deviations for stochastic 3D Leray-\( \alpha\) model with fractional dissipation, Commun. Pure Appl. Anal., 18, 2491-2510 (2019) · Zbl 1481.60121 · doi:10.3934/cpaa.2019113
[37] H. Liu; C. F. Sun, On the small time asymptotics of stochastic non-Newtonian fluids, Math. Methods Appl. Sci., 40, 1139-1152 (2017) · Zbl 1362.60025 · doi:10.1002/mma.4041
[38] W. Liu, Harnack inequality and applications for stochastic evolution equations with monotone drifts, J. Evol. Equ., 9, 747-770 (2009) · Zbl 1239.60058 · doi:10.1007/s00028-009-0032-8
[39] W. Liu, Large deviations for stochastic evolution equations with small multiplicative noise, Appl. Math. Optim., 61, 27-56 (2010) · Zbl 1387.60052 · doi:10.1007/s00245-009-9072-2
[40] W. Liu; M. Röckner, SPDE in Hilbert space with locally monotone coefficients, J. Funct. Anal., 259, 2902-2922 (2010) · Zbl 1236.60064 · doi:10.1016/j.jfa.2010.05.012
[41] W. Liu; M. Röckner, Local and global well-posedness of SPDE with generalized coercivity conditions, J. Differential Equations, 254, 725-755 (2013) · Zbl 1264.60046 · doi:10.1016/j.jde.2012.09.014
[42] W. Liu and M. Röckner, Stochastic Partial Differential Equations: An Introduction, Universitext, Springer, Cham, 2015. · Zbl 1361.60002
[43] W. Liu; M. Röckner; J. L. da Silva, Quasi-linear (stochastic) partial differential equations with time-fractional derivatives, SIAM J. Math. Anal., 50, 2588-2607 (2018) · Zbl 1407.60086 · doi:10.1137/17M1144593
[44] W. Liu; M. Röckner; X.-C. Zhu, Large deviation principles for the stochastic quasi-geostrophic equations, Stochastic Process. Appl., 123, 3299-3327 (2013) · Zbl 1291.60133 · doi:10.1016/j.spa.2013.03.020
[45] W. Liu, C. Tao and J. Zhu, Large deviation principle for a class of SPDE with locally monotone coefficients, Sci. China Math., (2020), In press. · Zbl 1451.60070
[46] T. Ma; R.-C. Zhu, Wong-Zakai approximation and support theorem for SPDEs with locally monotone coefficients, J. Math. Anal. Appl., 469, 623-660 (2019) · Zbl 1516.35578 · doi:10.1016/j.jmaa.2018.09.031
[47] J. Málek, J. Nečas, M. Rokyta and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Applied Mathematics and Mathematical Computation, 13. Chapman & Hall, London, 1996. · Zbl 0851.35002
[48] E. Pardoux, Equations aux Dérivées Partielles Stochastiques non Linéaires Monotones, Theèse de Doctorat, Université Paris-Sud, 1975.
[49] J. G. Ren; X. C. Zhang, Freidlin-wentzell’s large deviations for stochastic evolution equations, J. Funct. Anal., 254, 3148-3172 (2008) · Zbl 1143.60023 · doi:10.1016/j.jfa.2008.02.010
[50] M. Röckner; T. S. Zhang, Stochastic 3D tamed Navier-Stokes equations: Existence, uniqueness and small time large deviation principles, J. Differential Equations, 252, 716-744 (2012) · Zbl 1241.60032 · doi:10.1016/j.jde.2011.09.030
[51] J. Seidler, Exponential estimates for stochastic convolutions in 2-smooth Banach spaces, Electron. J. Probab., 15, 1556-1573 (2010) · Zbl 1225.60111 · doi:10.1214/EJP.v15-808
[52] D. W. Stroock, An Introduction to the Theory of Large Deviations, Universitext. Springer-Verlag, New York, 1984. · Zbl 0552.60022
[53] K. Taira, Analytic Semigroups and Semilinear Initial Boundary Value Problems, London Mathematical Society Lecture Note Series, 223. Cambridge University Press, Cambridge, 1995. · Zbl 0861.35001
[54] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Second edition, Johann Ambrosius Barth, Heidelberg, 1995. 532 pp. · Zbl 0830.46028
[55] S. R. S. Varadhan, Asymptotic probabilities and differential equations, Comm. Pure Appl. Math., 19, 261-286 (1966) · Zbl 0147.15503 · doi:10.1002/cpa.3160190303
[56] S. R. S. Varadhan, On the behavior of the fundamental solution of the heat equation with variable coefficients, Comm. Pure Appl. Math., 20, 431-455 (1967) · Zbl 0155.16503 · doi:10.1002/cpa.3160200210
[57] S. R. S. Varadhan, Diffusion processes in a small time interval, Comm. Pure Appl. Math., 20, 659-685 (1967) · Zbl 0155.16503 · doi:10.1002/cpa.3160200404
[58] F.-Y. Wang, Exponential convergence of non-linear monotone SPDEs, Discrete Contin. Dyn. Syst., 35, 5239-5253 (2015) · Zbl 1335.60115 · doi:10.3934/dcds.2015.35.5239
[59] J. Xiong; J. L. Zhai, Large deviations for locally monotone stochastic partial differential equations driven by Lévy noise, Bernoulli, 24, 2842-2874 (2018) · Zbl 1427.60137 · doi:10.3150/17-BEJ947
[60] T. G. Xu; T. S. Zhang, On the small time asymptotics of the two-dimensional stochastic Navier-Stokes equations, Ann. Inst. Henri Poincaré Probab. Stat., 45, 1002-1019 (2009) · Zbl 1196.60119 · doi:10.1214/08-AIHP192
[61] R. Zhang, On the small time asymptotics of scalar stochastic conservation laws, arXiv: 1907.03397.
[62] T. S. Zhang, On the small time asymptotics of diffusion processes on Hilbert spaces, Ann. Probab., 28, 537-557 (2000) · Zbl 1044.60071 · doi:10.1214/aop/1019160251
[63] X. C. Zhang, Stochastic Volterra equations in Banach spaces and stochastic partial differential equation, J. Funct. Anal., 258, 1361-1425 (2010) · Zbl 1189.60124 · doi:10.1016/j.jfa.2009.11.006
[64] J. H. Zhu; Z. Brzezniak; W. Liu, Maximal inequalities and exponential estimates for stochastic convolutions driven by Lévy-type processes in Banach spaces with application to stochastic quasi-geostrophic equations, SIAM J. Math. Anal., 51, 2121-2167 (2019) · Zbl 1419.60052 · doi:10.1137/18M1169011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.