×

Non-local model for surface tension in fluid-fluid simulations. (English) Zbl 1537.76158

Summary: We propose a non-local model for surface tension obtained in the form of an integral of a molecular-force-like function with support \(3.5\varepsilon\) added to the Navier-Stokes momentum conservation equation. We demonstrate analytically and numerically that with the non-local model interfaces with a radius of curvature larger than the support length behave macroscopically and microscopically, otherwise. For static droplets, the pressure difference \(P_{\varepsilon, in} - P_{\varepsilon, out}\) satisfies the Young-Laplace law for droplet radius greater than \(3.5\varepsilon\) and otherwise deviates from the Young-Laplace law. The latter indicates that the surface tension in the proposed model decreases with decreasing radius of curvature, which agrees with molecular dynamics and experimental studies of nanodroplets. Using the non-local model we perform numerical simulations of droplets under dynamic conditions, including a rising droplet, a droplet in shear flow, and two colliding droplets in shear flow, and compare results with a standard Navier-Stokes model subject to the Young-Laplace boundary condition at the fluid-fluid interface implemented via the Conservative Level Set (CLS) method. We find good agreement with existing numerical methods and analytical results for a rising macroscopic droplet and a droplet in a shear flow. For colliding droplets in shear flow, the non-local model converges (with respect to the grid size) to the correct behavior, including sliding, coalescence, and merging and breaking of two droplets depending on the capillary number. In contrast, we find that the results of the CLS model are highly grid-size dependent.

MSC:

76T06 Liquid-liquid two component flows
76M12 Finite volume methods applied to problems in fluid mechanics
76D45 Capillarity (surface tension) for incompressible viscous fluids

Software:

PROST; SURFER

References:

[1] Masuda, S.; Sawada, S., Molecular dynamics study of size effect on surface tension of metal droplets, Eur. Phys. J. D, 61, 637-644 (2011)
[2] Nakamura, T.; Shinoda, W.; Ikeshoji, T., Novel numerical method for calculating the pressure tensor in spherical coordinates for molecular systems, J. Chem. Phys., 135, Article 094106 pp. (2011)
[3] Kashchiev, D., Determining the curvature dependence of surface tension, J. Chem. Phys., 118, 20, 9081-9083 (2003)
[4] Landau, L. D.; Lifshitz, E. M., (Fluid Mechanics. Fluid Mechanics, Butterworth-Heinemann. Fluid Mechanics. Fluid Mechanics, Butterworth-Heinemann, Course of Theoretical Physics, vol. 6 (1987)) · Zbl 0655.76001
[5] Bardia, R.; Liang, Z.; Keblinski, P.; Trujillo, M. F., Continuum and molecular-dynamics simulation of nanodroplet collisions, Phys. Rev. E, 93, 5, Article 053104 pp. (2016)
[6] Jadhav, A. J.; Barigou, M., Bulk Nanobubbles or Not Nanobubbles: That is the Question, Langmuir, 36, 1699-1708 (2020)
[7] Michailidi, E. D.; Bomis, G.; Varoutoglou, A.; Kyzas, G. Z.; Mitrikas, G.; Mitropoulos, A. C.; Efthimiadou, E. K.; Favvas, E. P., Bulk nanobubbles: Production and investigation of their formation/stability mechanism, J. Colloid Interface Sci., 564, 371-380 (2020)
[8] Perera, R. H.; Wu, H.; Peiris, P.; Hernandez, C.; Burke, A.; Zhang, H.; Exner, A. A., Improving performance of nanoscale ultrasound contrast agents using N,N-diethylacrylamide stabilization, Nanomed. Nanotechnol. Biol. Med., 13, 1, 59-67 (2017)
[9] Ohgaki, K.; Khanh, N. Q.; Joden, Y.; Tsuji, A.; Nakagawa, T., Physicochemical approach to nanobubble solutions, Chem. Eng. Sci., 65, 3, 1296-1300 (2010)
[10] Liu, S.; Kawagoe, Y.; Makino, Y.; Oshita, S., Effects of nanobubbles on the physicochemical properties of water: The basis for peculiar properties of water containing nanobubbles, Chem. Eng. Sci., 93, 250-256 (2013)
[11] Hernandez, C.; Nieves, L.; de Leon, A. C.; Advincula, R.; Exner, A. A., Role of Surface Tension in Gas Nanobubble Stability Under Ultrasound, ACS Appl. Mater. Interfaces, 10, 12, 9949-9956 (2018)
[12] Abenojar, E. C.; Nittayacharn, P.; De Leon, A. C.; Perera, R.; Wang, Y.; Bederman, I.; Exner, A. A., Effect of Bubble Concentration on the in Vitro and in Vivo Performance of Highly Stable Lipid Shell-Stabilized Micro- and Nanoscale Ultrasound Contrast Agents, Langmuir (2019)
[13] Perera, R. H.; Solorio, L.; Wu, H.; Gangolli, M.; Silverman, E.; Hernandez, C.; Peiris, P. M.; Broome, A.-M.; Exner, A. A., Nanobubble Ultrasound Contrast Agents for Enhanced Delivery of Thermal Sensitizer to Tumors Undergoing Radiofrequency Ablation, Pharm. Res., 31, 6, 1407-1417 (2014)
[14] Hernandez, C.; Gulati, S.; Fioravanti, G.; Stewart, P. L.; Exner, A. A., Cryo-EM Visualization of Lipid and Polymer-Stabilized Perfluorocarbon Gas Nanobubbles - A Step Towards Nanobubble Mediated Drug Delivery, Sci. Rep., 7, 1, Article 13517 pp. (2017)
[15] Agarwal, A.; Ng, W. J.; Liu, Y., Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere, 84, 9, 1175-1180 (2011)
[16] Uchida, T.; Oshita, S.; Ohmori, M.; Tsuno, T.; Soejima, K.; Shinozaki, S.; Take, Y.; Mitsuda, K., Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater, Nanoscale Res. Lett., 6, 1, 295 (2011)
[17] Temesgen, T.; Bui, T. T.; Han, M.; Kim, T.-i.; Park, H., Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review, Adv. Colloid Interface Sci., 246, 40-51 (2017)
[18] Wang, D.; Yang, X.; Tian, C.; Lei, Z.; Kobayashi, N.; Kobayashi, M.; Adachi, Y.; Shimizu, K.; Zhang, Z., Characteristics of ultra-fine bubble water and its trials on enhanced methane production from waste activated sludge, Bioresour. Technol., 273, 63-69 (2019)
[19] Hu, L.; Xia, Z., Application of ozone micro-nano-bubbles to groundwater remediation, J. Hazard. Mater., 342, 446-453 (2018)
[20] Atkinson, A. J.; Apul, O. G.; Schneider, O.; Garcia-Segura, S.; Westerhoff, P., Nanobubble Technologies Offer Opportunities To Improve Water Treatment, Acc. Chem. Res., 52, 5, 1196-1205 (2019)
[21] Chen, D.; Cardinaels, R.; Moldenaers, P., Effect of Confinement on Droplet Coalescence in Shear Flow, Langmuir, 25, 22, 12885-12893 (2009)
[22] Zhu, J.; An, H.; Alheshibri, M.; Liu, L.; Terpstra, P. M.J.; Liu, G.; Craig, V. S.J., Cleaning with Bulk Nanobubbles, Langmuir, 32, 11203-11211 (2016)
[23] Ghadimkhani, A.; Zhang, W.; Marhaba, T., Ceramic membrane defouling (cleaning) by air Nano Bubbles, Chemosphere, 146, 379-384 (2016)
[24] Fan, M.; Tao, D.; Honaker, R.; Luo, Z., Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions, Min. Sci. Technol., 20, 1, 1-19 (2010)
[25] Zhou, Y.; Li, Y.; Liu, X.; Wang, K.; Muhammad, T., Synergistic improvement in spring maize yield and quality with micro/nanobubbles water oxygation, Sci. Rep., 9, 5226 (2019)
[26] Ebina, K.; Shi, K.; Hirao, M.; Hashimoto, J.; Kawato, Y.; Kaneshiro, S.; Morimoto, T.; Koizumi, K.; Yoshikawa, H., Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice, PLoS ONE, 8, 6, Article e65339 pp. (2013)
[27] Jiang, X.; James, A. J., Numerical simulation of the head-on collision of two equal-sized drops with van der Waals forces, J. Eng. Math., 59, 1, 99-121 (2007) · Zbl 1178.76277
[28] Coyajee, E.; Jan Boersma, B., Numerical simulation of drop impact on a liquid-liquid interface with a multiple marker front-capturing method, J. Comp. Physiol., 228, 4444-4467 (2009) · Zbl 1395.76056
[29] Pan, Y.; Suga, K., Numerical simulation of binary liquid droplet collision, Phys. Fluids, 17, 8, Article 082105 pp. (2005) · Zbl 1187.76398
[30] Sussman, M.; Puckett, E. G., A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows, J. Comput. Phys., 162, 2, 301-337 (2000) · Zbl 0977.76071
[31] Pan, K.-L.; Law, C. K.; Zhou, B., Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision, J. Appl. Phys., 103, 6, Article 064901 pp. (2008)
[32] Mason, L. R.; Stevens, G. W.; Harvie, D. J.E., Multiscale volume of fluid modelling of droplet coalescence, (Ninth Int. Conf. CFD (2012), Miner. Process Ind.: Miner. Process Ind. Melbourne, Australia)
[33] Liu, M.; Bothe, D., Toward the predictive simulation of bouncing versus coalescence in binary droplet collisions, Acta Mech., 1-22 (2018)
[34] Kwakkel, M.; Breugem, W.-P.; Boersma, B. J., Extension of a CLSVOF method for droplet-laden flows with a coalescence/breakup model, J. Comput. Phys., 253, 166-188 (2013) · Zbl 1349.76121
[35] Tryggvason, G.; Thomas, S.; Lu, J.; Aboulhasanzadeh, B., Multiscale Issues in DNS of Multiphase Flows, Acta Math. Sci., 30B, 2, 551-562 (2010) · Zbl 1228.76183
[36] Chan, W. H.R.; Urzay, J.; Moin, P., Subgrid-scale modeling for microbubble generation amid colliding water surfaces (2018), Tech. rep.
[37] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A Continuum Method for Modeling Surface Tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[38] Tartakovsky, A.; Meakin, P., Modeling of surface tension and contact angles with smoothed particle hydrodynamics, Phys. Rev. E, 72, 2, Article 026301 pp. (2005)
[39] Tartakovsky, A. M.; Panchenko, A., Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics, J. Comput. Phys., 305, 1119-1146 (2016) · Zbl 1349.76739
[40] Howard, A. A.; Zhou, Y.; Tartakovsky, A. M., Analytical steady-state solutions for pressure in multiscale non-local model for two-fluid systems (may 2019)
[41] Park, S.; Weng, J.; Tien, C., A molecular dynamics study on surface tension of microbubbles, Int. J. Heat Mass Transf., 44, 1849-1856 (2001) · Zbl 1107.76314
[42] Malek, S. M.A.; Sciortino, F.; Poole, P. H.; Saika-Voivod, I., Evaluating the Laplace pressure of water nanodroplets from simulations, J. Phys. Condens. Matter, 30, 14, Article 144005 pp. (2018)
[43] Tryggvason, G., A Front-tracking/Finite-Volume Navier-Stokes Solver for Direct Numerical Simulations of Multiphase Flows (2012), Tech. rep.
[44] Sethian, J. A.; Smereka, P., Level Set Methods for Fluid Interfaces, Annu. Rev. Fluid Mech., 35, 341-372 (2003) · Zbl 1041.76057
[45] Olsson, E.; Kreiss, G., A conservative level set method for two phase flow, J. Comput. Phys., 210, 1, 225-246 (2005) · Zbl 1154.76368
[46] Olsson, E.; Kreiss, G.; Zahedi, S., A conservative level set method for two phase flow II, J. Comput. Phys., 225, 1, 785-807 (2007) · Zbl 1256.76052
[47] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[48] Sussman, M.; Fatemi, E.; Smereka, P.; Osher, S., An improved level set method for incompressible two-phase flows, Comput. Fluids, 27, 5-6, 663-680 (1998) · Zbl 0967.76078
[49] Harten, A., The artificial compression method for computation of shocks and contact discontinuities. I. Single conservation laws, Commun. Pure Appl. Math., 30, 5, 611-638 (1977) · Zbl 0343.76023
[50] Hysing, S.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L., Quantitative benchmark computations of two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 60, 11, 1259-1288 (2009) · Zbl 1273.76276
[51] Štrubelj, L.; Tiselj, I.; Mavko, B., Simulations of free surface flows with implementation of surface tension and interface sharpening in the two-fluid model, Int. J. Heat Fluid Flow, 30, 4, 741-750 (2009)
[52] Klostermann, J.; Schaake, K.; Schwarze, R., Numerical simulation of a single rising bubble by VOF with surface compression, Int. J. Numer. Methods Fluids, 71, 8, 960-982 (2013) · Zbl 1430.76119
[53] Aland, S.; Voigt, A., Benchmark computations of diffuse interface models for two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 69, 3, 747-761 (2012)
[54] Zahedi, S.; Kronbichler, M.; Kreiss, G., Spurious currents in finite element based level set methods for two-phase flow, Int. J. Numer. Methods Fluids, 69, 1433-1456 (2012) · Zbl 1253.76066
[55] Taylor, G. I., The Viscosity of a Fluid Containing Small Drops of Another Fluid, Proc. R. Soc. A, Math. Phys. Eng. Sci., 138, 834, 41-48 (1932) · Zbl 0005.32201
[56] Taylor, G. I., The Formation of Emulsions in Definable Fields of Flow, Proc. R. Soc. Lond. A, 146, 858, 501-523 (1934)
[57] Zhou, H.; Pozrikidis, C., The flow of suspensions in channels: Single files of drops, Phys. Fluids A, Fluid Dyn., 5, 2, 311-324 (1993)
[58] Ioannou, N.; Liu, H.; Zhang, Y., Droplet dynamics in confinement, J. Comput. Sci., 17, 463-474 (2016)
[59] Guido, S.; Villone, M., Three-dimensional shape of a drop under simple shear flow, J. Rheol., 42, 2, 395 (1998)
[60] Guido, S., Shear-induced droplet deformation: Effects of confined geometry and viscoelasticity, Curr. Opin. Colloid Interface Sci., 16, 1, 61-70 (2011)
[61] Chaffey, C. E.; Brenner, H., A second-order theory for shear deformation of drops, J. Colloid Interface Sci., 24, 2, 258-269 (1967)
[62] Chen, S.; Phan-Thien, N.; Fan, X.-J.; Khoo, B. C.; Khan, B. C., Dissipative particle dynamics simulation of polymer drops in a periodic shear flow, J. Non-Newton. Fluid Mech., 118, 65-81 (2004) · Zbl 1130.76306
[63] Pan, D.; Phan-Thien, N.; Khoo, B. C., Dissipative particle dynamics simulation of droplet suspension in shear flow at low Capillary number, J. Non-Newton. Fluid Mech., 212, 63-72 (2014)
[64] Guido, S.; Simeone, M., Binary collision of drops in simple shear flow by computer-assisted video optical microscopy, J. Fluid Mech., 357, Article S0022112097007921 pp. (1998)
[65] Shardt, O.; Derksen, J. J.; Mitra, S. K., Simulations of Droplet Coalescence in Simple Shear Flow, Langmuir, 29, 21, 6201-6212 (2013)
[66] Adalsteinsson, D.; Sethian, J. A., A Fast Level Set Method for Propagating Interfaces, J. Comput. Phys., 118, 2, 269-277 (1995) · Zbl 0823.65137
[67] Popinet, S., Numerical Models of Surface Tension, Annu. Rev. Fluid Mech., 50, 1-28 (2018)
[68] Renardy, Y.; Renardy, M., PROST: A Parabolic Reconstruction of Surface Tension for the Volume-of-Fluid Method, J. Comput. Phys., 183, 2, 400-421 (2002) · Zbl 1057.76569
[69] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling Merging and Fragmentation in Multiphase Flows with SURFER, J. Comput. Phys., 113, 1, 134-147 (1994) · Zbl 0809.76064
[70] Jamet, D.; Torres, D.; Brackbill, J. U., On the Theory and Computation of Surface Tension: The Elimination of Parasitic Currents through Energy Conservation in the Second-Gradient Method, J. Comput. Phys., 182, 1, 262-276 (2002) · Zbl 1058.76597
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.