×

Persistence of excitation for identifying switched linear systems. (English) Zbl 1482.93291

Summary: This paper investigates the uniqueness of parameters via persistence of excitation for switched linear systems. The main contribution is a much weaker sufficient condition on the regressors to be persistently exciting that guarantees the uniqueness of the parameter sets and also provides new insights in understanding the relation among different subsystems. It is found that for uniquely determining the parameters of switched linear systems, the needed minimum number of samples derived from our sufficient condition is much smaller than that reported in the literature.

MSC:

93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C05 Linear systems in control theory

References:

[1] Bako, L., Identification of switched linear systems via sparse optimization, Automatica, 47, 668-677 (2011) · Zbl 1215.93034
[2] Bako, L.; Boukharouba, K.; Duviella, E.; Lecoeuche, S., A recursive identification algorithm for switched linear/affine models, Nonlinear Analysis: Hybrid Systems, 5, 242-253 (2011) · Zbl 1225.93112
[3] Bemporad, A.; Garulli, A.; Paoletti, S.; Vicino, A., A bounded-error approach to piecewise affine system identification, IEEE Transactions on Automatic Control, 50, 1567-1580 (2005) · Zbl 1365.93100
[4] Bredensteiner, E. J.; Bennett, K. P., Multicategory classification by support vector machines, Computational Optimization and Applications, 12, 53-79 (1999) · Zbl 1040.90574
[5] Breiman, L., Hinging hyperplanes for regression, classification, and function approximation, IEEE Transactions on Information Theory, 39, 999-1013 (1993) · Zbl 0793.62031
[6] De Koning, W. L., Digital optimal reduced-order control of pulse-width-modulated switched linear systems, Automatica, 39, 1997-2003 (2003) · Zbl 1043.93041
[7] Ferrari-Trecate, G.; Muselli, M.; Liberati, D.; Morari, M., (A clustering technique for the identification of piecewise affine systems. A clustering technique for the identification of piecewise affine systems, Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), Vol. 2034 (2001)), 218-231 · Zbl 0991.93070
[8] Garulli, A.; Paoletti, S.; Vicino, A., A survey on switched and piecewise affine system identification, Vol. 16 (2012), IFAC
[9] Heemels, W. P.; De Schutter, B.; Bemporad, A., Equivalence of hybrid dynamical models, Automatica, 37, 1085-1091 (2001) · Zbl 0990.93056
[10] Juloski, A.; Weiland, S.; Heemels, W., A bayesian approach to identification of hybrid systems, IEEE Transactions on Automatic Control, 50, 1520-1533 (2005) · Zbl 1365.93526
[11] Lauer, F., Estimating the probability of success of a simple algorithm for switched linear regression, Nonlinear Analysis: Hybrid Systems, 8, 31-47 (2013) · Zbl 1257.93105
[12] Lauer, F., On the complexity of piecewise affine system identification, Automatica, 62, 148-153 (2015) · Zbl 1329.93052
[13] Lauer, F., Global optimization for low-dimensional switching linear regression and bounded-error estimation, Automatica, 89, 73-82 (2018) · Zbl 1387.93167
[14] Lauer, F.; Bloch, G., (Hybrid system identification: theory and algorithms for learning switching models. Hybrid system identification: theory and algorithms for learning switching models, Lecture notes in control and information sciences, Vol. 478 (2019), Springer International Publishing: Springer International Publishing Cham) · Zbl 1402.93010
[15] Lin, J.-N.; Unbehauen, R., Canonical piecewise-linear approximations, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 39, 697-699 (1992) · Zbl 0765.41022
[16] Mattsson, P.; Zachariah, D.; Stoica, P., Recursive identification method for piecewise arx models: a sparse estimation approach, IEEE Transactions on Signal Processing, 64, 5082-5093 (2016) · Zbl 1414.94409
[17] Milanese, M.; Vicino, A., Optimal estimation theory for dynamic systems with set membership uncertainty: an overview, Automatica, 27, 997-1009 (1991) · Zbl 0737.62088
[18] Mu, B.; Chen, T.; Cheng, C.; Bai, E.-W., Identification of switched linear systems: persistence of excitation and numerical algorithms (2021), arXiv
[19] Nakada, H.; Takaba, K.; Katayama, T., Identification of piecewise affine systems based on statistical clustering technique, Automatica, 41, 905-913 (2005) · Zbl 1093.93007
[20] Ohlsson, H.; Ljung, L., Identification of piecewise affine systems using sum-of-norms regularization, Vol. 44 (2011), IFAC
[21] Paoletti, S.; Juloski, A. L.; Ferrari-Trecate, G.; Vidal, R., Identification of hybrid systems a tutorial, European Journal of Control, 13, 242-260 (2007) · Zbl 1293.93219
[22] Petreczky, M.; Bako, L.; Van Schuppen, J. H., Identifiability of discrete-time linear switched systems, (HSCC’10 - Proceedings of the 13th acm international conference on hybrid systems: computation and control (2010)), 141-150 · Zbl 1360.93187
[23] Pillonetto, G., A new kernel-based approach to hybrid system identification, Automatica, 70, 21-31 (2016) · Zbl 1339.93113
[24] Roll, J.; Bemporad, A.; Ljung, L., Identification of piecewise affine systems via mixed-integer programming, Automatica, 40, 37-50 (2004) · Zbl 1037.93023
[25] Sontag, E. D., Nonlinear regulation: the piecewise linear approach, IEEE Transactions on Automatic Control, 26, 346-358 (1981) · Zbl 0474.93039
[26] Sun, Z.; Ge, S. S., Switched linear systems: control and design (2005), Springer: Springer London · Zbl 1075.93001
[27] Vidal, R., Recursive identification of switched arx systems, Automatica, 44, 2274-2287 (2008) · Zbl 1153.93010
[28] Vidal, R., & Anderson, B. D. O. (2004). In Proceedings of the ieee conference on decision and control (pp. 32-37).
[29] Vidal, R., Soatto, S., Ma, Y., & Sastry, S. (2003). An algebraic geometric approach to the identification of a class of linear hybrid systems. In Proceedings of the ieee conference on decision and control, Vol. 1 (pp. 167-172).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.