×

An asymptotic expansion for the fractional \(p\)-Laplacian and for gradient-dependent nonlocal operators. (English) Zbl 07517068

Summary: Mean value formulas are of great importance in the theory of partial differential equations: many very useful results are drawn, for instance, from the well-known equivalence between harmonic functions and mean value properties. In the nonlocal setting of fractional harmonic functions, such an equivalence still holds, and many applications are nowadays available. The nonlinear case, corresponding to the \(p\)-Laplace operator, has also been recently investigated, whereas the validity of a nonlocal, nonlinear, counterpart remains an open problem. In this paper, we propose a formula for the nonlocal, nonlinear mean value kernel, by means of which we obtain an asymptotic representation formula for harmonic functions in the viscosity sense, with respect to the fractional (variational) \(p\)-Laplacian (for \(p\geq 2)\) and to other gradient-dependent nonlocal operators.

MSC:

47-XX Operator theory
35-XX Partial differential equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
28D20 Entropy and other invariants
82B10 Quantum equilibrium statistical mechanics (general)

References:

[1] Abatangelo, N., Large \(S\)-harmonic functions and boundary blow-up solutions for the fractional Laplacian, Discrete Contin. Dyn. Syst.35(12) (2015) 5555-5607. · Zbl 1333.31013
[2] Abatangelo, N., Jarohs, S. and Saldaña, A., Integral representation of solutions to higher-order fractional Dirichlet problems on balls, Commun. Contemp. Math.20(8) (2018) 1850002, 36 pp. · Zbl 1404.35094
[3] Arroyo, Á. and Llorente, J. G., On the asymptotic mean value property for planar \(p\)-harmonic functions, Proc. Amer. Math. Soc.144(9) (2016) 3859-3868. · Zbl 1345.31006
[4] Á. Arroyo and J. G. Llorente, \(p\)-harmonic functions by way of intrinsic mean value properties, preprint (2020); arXiv:2003.01210.
[5] Bjorland, C., Caffarelli, L. and Figalli, A., Non-local gradient dependent operators, Adv. Math.230(4-6) (2012) 1859-1894. · Zbl 1252.35099
[6] Bjorland, C., Caffarelli, L. and Figalli, A., Nonlocal tug-of-war and the infinity fractional Laplacian, Comm. Pure Appl. Math.65(3) (2012) 337-380. · Zbl 1235.35278
[7] Bourgain, J., Brezis, H. and Mironescu, P., Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations (IOS, Amsterdam, 2001), pp. 439-455. · Zbl 1103.46310
[8] Brasco, L. and Lindgren, E., Higher Sobolev regularity for the fractional \(p\)-Laplace equation in the superquadratic case, Adv. Math.304 (2017) 300-354. · Zbl 1364.35055
[9] Bucur, C., Some observations on the Green function for the ball in the fractional Laplace framework, Comm. Pure Appl. Math.15(2) (2016) 657-699. · Zbl 1334.35383
[10] Bucur, C., Dipierro, S. and Valdinoci, E., On the mean value property of fractional harmonic functions, Nonlinear Anal.201 (2020) 112112, 25 pp. · Zbl 1448.35016
[11] Bucur, C. and Squassina, M., Asymptotic mean value properties for fractional anisotropic operators, J. Math. Anal. Appl.466(1) (2018) 107-126. · Zbl 1394.35546
[12] Caffarelli, L. and Silvestre, L., Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math.62(5) (2009) 597-638. · Zbl 1170.45006
[13] F. del Teso, J. Endal and M. Lewicka, On asymptotic expansions for the fractional infinity Laplacian, preprint (2020); arXiv:2007.15765. · Zbl 1509.35321
[14] del Teso, F. and Lindgren, E., Convergence of dynamic programming principles for the \(p\)-Laplacian, Adv. Calc. Var. (2020). · Zbl 1467.35190
[15] F. del Teso and E. Lindgren, A mean value formula for the variational \(p\)-Laplacian, preprint (2020); arXiv:2003.07084. · Zbl 1467.35190
[16] Di Castro, A., Kuusi, T. and Palatucci, G., Local behavior of fractional \(p\)-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire33(5) (2016) 1279-1299. · Zbl 1355.35192
[17] Di Nezza, E., Palatucci, G. and Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math.136(5) (2012) 521-573. · Zbl 1252.46023
[18] Giorgi, T. and Smits, R., Mean value property for \(p\)-harmonic functions, Proc. Amer. Math. Soc.140(7) (2012) 2453-2463. · Zbl 1276.35095
[19] Ishii, H. and Nakamura, G., A class of integral equations and approximation of \(p\)-Laplace equations, Calc. Var. Partial Differential Equations37(3-4) (2010) 485-522. · Zbl 1198.45005
[20] Ishiwata, M., Magnanini, R. and Wadade, H., A natural approach to the asymptotic mean value property for the \(p\)-Laplacian, Calc. Var. Partial Differential Equations56(4) (2017) 97, 22 pp. · Zbl 1378.35147
[21] Kawohl, B., Manfredi, J. and Parviainen, M., Solutions of nonlinear PDEs in the sense of averages, J. Math. Pures Appl. \((9)97(2) (2012) 173-188\). · Zbl 1236.35083
[22] Korvenpää, J., Kuusi, T. and Lindgren, E., Equivalence of solutions to fractional \(p\)-Laplace type equations, J. Math. Pures Appl.132(9) (2019) 1-26. · Zbl 1426.35220
[23] Kuusi, T., Mingione, G. and Sire, Y., Nonlocal Equations with Measure Data, Comm. Math. Phys.337(3) (2015) 1317-1368. · Zbl 1323.45007
[24] Kyprianou, A. E., Osojnik, A. and Shardlow, T., Unbiased ‘walk-on-spheres’ Monte Carlo methods for the fractional Laplacian, IMA J. Numer. Anal.38(3) (2018) 1550-1578. · Zbl 1477.65016
[25] Landkof, N. S., Foundations of Modern Potential Theory (Springer-Verlag, New York-Heidelberg, 1972). Translated from the Russian by Doohovskoy, A. P., Die Grundlehren der mathematischen Wissenschaften, Band 180. · Zbl 0253.31001
[26] M. Lewicka, Non-local tug-of-war with noise for the geometric fractional \(p\)-Laplacian, preprint (2020); arXiv:2007.13424. · Zbl 1484.35386
[27] Lindgren, E., Hölder estimates for viscosity solutions of equations of fractional \(p\)-Laplace type, NoDEA Nonlinear Differential Equations Appl.23(5) (2016) 55, 18 pp. · Zbl 1380.35097
[28] Lindqvist, P. and Manfredi, J., On the mean value property for the \(p\)-Laplace equation in the plane, Proc. Amer. Math. Soc.144(1) (2016) 143-149. · Zbl 1327.35124
[29] Manfredi, J. J., Parviainen, M. and Rossi, J. D., An asymptotic mean value characterization for \(p\)-harmonic functions, Proc. Amer. Math. Soc.138(3) (2010) 881-889. · Zbl 1187.35115
[30] Manfredi, J. J., Parviainen, M. and Rossi, J. D., An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games, SIAM J. Math. Anal.42(5) (2010) 2058-2081. · Zbl 1231.35107
[31] Manfredi, J. J., Parviainen, M. and Rossi, J. D., On the definition and properties of \(p\)-harmonious functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. \((5)11(2) (2012) 215-241\). · Zbl 1252.91014
[32] Palatucci, G., The Dirichlet problem for the \(p\)-fractional Laplace equation, Nonlinear Anal.177(Part B) (2018) 699-732. · Zbl 1404.35212
[33] Ponce, A. C., A new approach to Sobolev spaces and connections to \(\operatorname{\Gamma} \)-convergence, Calc. Var. Partial Differential Equations19(3) (2004) 229-255. · Zbl 1352.46037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.