×

Multipoint problem for Schrödinger type equations with general elliptic part. (English) Zbl 1535.35155

Summary: The existence, uniqueness, regularity properties and Strichartz type estimates for the solution of multipoint problem for linear and nonlinear Schrödinger equations with general elliptic leading part are obtained.

MSC:

35Q41 Time-dependent Schrödinger equations and Dirac equations
35Q55 NLS equations (nonlinear Schrödinger equations)
35B65 Smoothness and regularity of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
47B25 Linear symmetric and selfadjoint operators (unbounded)
46E40 Spaces of vector- and operator-valued functions

References:

[1] A. M. Alghamdi, S. Gala, M. A. Ragusa, Global regularity for the 3D micropolar fluid flows, Filomat, 36 (6)(2022) 1967-1970.
[2] J. Bourgain, Global solutions of nonlinear Schrodinger equations. American Math-ematical, Society Colloquium Publications, 46. American Mathematical Society, Providence, RI, 1999, MR1691575. · Zbl 0933.35178
[3] Bergh and J. Lofstrom, Interpolation spaces: An introduction, Springer-Verlag, New York, 1976. · Zbl 0344.46071
[4] T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrodinger equation in H s . Nonlinear Anal. 14 (1990), 807-836. · Zbl 0706.35127
[5] J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys. 123 (1989), 535-573. · Zbl 0698.35112
[6] L. Escauriaza, C. E. Kenig, G. Ponce, and L. Vega, Hardy’s uncertainty principle, convexity and Schrödinger evolutions, J. European Math. Soc. 10, 4 (2008) 883-907. · Zbl 1158.35018
[7] J. Chabrowski, H. Jan, J. F. Grotowski, On radial solutions of the Schrodinger type equation. Advanced Nonlinear Studies 11 (2) (2011). 295-310. · Zbl 1221.35392
[8] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow up for the energycritical, focusing, nonlinear Schrodinger equation in the radial case. Invent. Math. 166 (2006), 645-675. · Zbl 1115.35125
[9] M. Keel and T. Tao, Endpoint Strichartz estimates. Amer. J. Math. 120 (1998), 955-980. · Zbl 0922.35028
[10] R. Killip and M. Visan, Nonlinear Schrodinger equations at critical regularity, Clay Mathematics Proceedings, v. 17, 2013. · Zbl 1298.35195
[11] Molchanov S. A., Vainberg B., Schrödinger operator with matrix potentials, transi-tion from the absolutely continuous to the singular spectrum, J. Funct. Anal., 215 (2004), 111-129. · Zbl 1061.47041
[12] E. M. Stein, Singular Integrals and differentiability properties of functions, Prince-ton Univ. Press, Princeton. NJ, 1970. · Zbl 0207.13501
[13] C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge University Press, 1993. · Zbl 0783.35001
[14] R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and deay of solutionsof wave equations. Duke Math. J. 44 (1977), 705-714, MR0512086A. · Zbl 0372.35001
[15] H. Triebel, Interpolation theory, Function spaces, Differential operators, North-Holland, Amsterdam, 1978. · Zbl 0387.46032
[16] T. Tao, Nonlinear dispersive equations. Local and global analysis. CBMS Regional conference series in mathematics, 106. American Mathematical Society, Providence, RI, 2006., MR2233925. · Zbl 1106.35001
[17] V. S. Vladimirov, Generalized Functions in Mathematical Physics, URSS, Moscow, M.1979. · Zbl 0515.46034
[18] X. LiuI, G. Simpson, C. Sulem, Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation, Journal of Nonlinear Science 23 ( 2013)4, 557-583. · Zbl 1271.35004
[19] Gary M. Lieberman, Nonlocal problems for quasilinear parabolic equations in de-vergence form, Proceeding of the fourth Internathional conference on dynamical systems and differential equations, May 24 -27, 2002, 563-570.
[20] L. Byszewski, Strong maximum and minimum principles for parabolic problems with non-local inequalities, Z. Angew. Math. Mech., 70 (1990), 202-206. · Zbl 0709.35018
[21] J. Chadam and H-M.Yin, Determination of an unknown function in a parabolic equation with an overspecified condition, Math. Meth. Appl. Sci., 13 (1990), 421-430. · Zbl 0738.35097
[22] J. Chabrowski, On non-local problems for parabolic equations, Nagoya Math. J., 93 (1984), 109-131. · Zbl 0506.35048
[23] A. A. Kerefov, Non-local boundary value problems for parabolic equations, Differ-entsial0nye · Zbl 0421.35032
[24] Uravnenija, 15 (1979), 74-78 [Russian];
[25] English transl. in Differential Equations, 15 (1979), 52-55.
[26] Y. P. Lin, Analytical and numerical solutions for a class of nonlocal nonlinear parabolic differential equations, SIAM J. Math. Anal., 25 (1994), 1577-1594. · Zbl 0807.35069
[27] P. N. Vabishchevich, Non-local parabolic problems and the inverse heat-conduction problem, Differentsial0nye Uravnenija, 17 (1981), 1193-1199 [Russian]; · Zbl 0556.35064
[28] English transl. in differential equations, 17 (1981), 761-765. · Zbl 0556.35064
[29] O. Veliev, Multidimensional periodic Schrödinger operator (Perturbation theory and applications), Springer Cham Heidelberg, New York, Dordrecht, London 2015. · Zbl 1322.81005
[30] K. D. Wang, X. G. Geng, M. M. Chen, R. M. Li, Spectral analysis and long-time asymptotics of a coupled nonlinear Schr¨odinger system, Bulletin of the Malaysian Mathematical Sciences Society, 45 (5) (2022) 2071-2106. · Zbl 1498.35517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.