×

Development of the meshless finite volume particle method with exact and efficient calculation of interparticle area. (English) Zbl 1348.76103

Summary: The Finite Volume Particle Method (FVPM) is a meshless method based on a definition of interparticle area which is closely analogous to cell face area in the classical finite volume method. In previous work, the interparticle area has been computed by numerical integration, which is a source of error and is extremely expensive. We show that if the particle weight or kernel function is defined as a discontinuous top-hat function, the particle interaction vectors may be evaluated exactly and efficiently. The new formulation reduces overall computational time by a factor between 6.4 and 8.2. In numerical experiments on a viscous flow with an analytical solution, the method converges under all conditions. Significantly, in contrast with standard FVPM and SPH, error depends on particle size but not on particle overlap (as long as the computational domain is completely covered by particles). The new method is shown to be superior to standard FVPM for shock tube flow and inviscid steady transonic flow. In benchmarking on a viscous multiphase flow application, FVPM with exact interparticle area is shown to be competitive with a mesh-based volume-of-fluid solver in terms of computational time required to resolve the structure of an interface.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35Q30 Navier-Stokes equations

Software:

InterFOAM; AUSM; OpenFOAM

References:

[1] Koumoutsakos, P., Multiscale flow simulations using particles, Annu. Rev. Fluid Mech., 37, 457-487 (2005) · Zbl 1117.76054
[2] Monaghan, J. J., Smoothed particle hydrodynamics and its diverse applications, Annu. Rev. Fluid Mech., 44, 1, 323-346 (2012) · Zbl 1361.76019
[3] Violeau, D., Fluid Mechanics and the SPH Method (2012), Oxford University Press: Oxford University Press Oxford, UK, URL http://ukcatalogue.oup.com/product/9780199655526.do#.UcIzdpx7_xE · Zbl 1247.76001
[4] Hietel, D.; Steiner, K.; Struckmeier, J., A finite volume particle method for compressible flows, Math. Models Methods Appl. Sci., 10, 1363-1382 (2000) · Zbl 1205.76229
[5] Ismagilov, T., Smooth volume integral conservation law and method for problems in Lagrangian coordinates, Comput. Math. Math. Phys., 46, 453-464 (2006) · Zbl 1210.76120
[6] Ismagilov, T. Z., On a smooth volume approach, integral conservation law, and upwind scheme with monotonic reconstruction, Sib. J. Numer. Math., 9, 4, 345-352 (2006) · Zbl 1212.65338
[7] Junk, M., Do finite volume methods need a mesh?, (Griebel, M., Meshfree Methods for Partial Differential Equations (2003), Springer), 223-238 · Zbl 1015.65040
[8] Serrano, M.; Español, P.; Zúñiga, I., Voronoi fluid particle model for Euler equations, J. Stat. Phys., 121, 1-2, 133-147 (2005) · Zbl 1108.76037
[9] Springel, V., E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh, Mon. Not. R. Astron. Soc., 401, 2, 791-851 (2010)
[10] Nestor, R.; Basa, M.; Lastiwka, M.; Quinlan, N., Extension of the finite volume particle method to viscous flow, J. Comput. Phys., 228, 1733-1749 (2009) · Zbl 1409.76078
[11] Quinlan, N. J.; Nestor, R. M., Fast exact evaluation of particle interaction vectors in the finite volume particle method, (Griebel, M.; Schweitzer, M. A., Meshfree Methods for Partial Differential Equations V. Meshfree Methods for Partial Differential Equations V, Lecture Notes in Computational Science and Engineering, vol. 79 (2011), Springer: Springer Berlin, Heidelberg), 219-234 · Zbl 1218.65094
[12] Keck, R.; Hietel, D., A projection technique for incompressible flow in the meshless finite volume particle method, Adv. Comput. Math., 23, 143-169 (2005) · Zbl 1137.76039
[13] Teleaga, D.; Struckmeier, J., A finite-volume particle method for conservation laws on moving domains, Internat. J. Numer. Methods Fluids, 58, 945-967 (2008) · Zbl 1158.65063
[15] Junk, M.; Struckmeier, J., Consistency analysis of meshfree methods for conservation laws, Mitt. Ges. Angew. Math. Mech., 24, 99-126 (2001) · Zbl 0994.65093
[16] Hietel, D.; Keck, R., Consistency by coefficient correction in the finite volume particle method, (Griebel, M., Meshfree Methods for Partial Differential Equations. Meshfree Methods for Partial Differential Equations, Lecture Notes in Computational Science and Engineering (2003), Springer: Springer Berlin), 211-221 · Zbl 1012.65094
[17] van Leer, B., Towards the ultimate conservative difference scheme. V—a second-order sequel to Godunov’s method, J. Comput. Phys., 32, 101-136 (1979) · Zbl 1364.65223
[19] Liou, M.-S., A sequel to AUSM: \(AUSM^+\), J. Comput. Phys., 129, 364-382 (1996) · Zbl 0870.76049
[20] Liou, M.-S., A sequel to AUSM, part II: \(AUSM^+\)-up for all speeds, J. Comput. Phys., 214, 137-170 (2006) · Zbl 1137.76344
[21] Bonet, J.; Lok, T.-S. L., Variational and momentum preservation aspects of smooth particle hydrodynamic formulations, Comput. Methods Appl. Mech. Engrg., 180, 97-115 (1999) · Zbl 0962.76075
[22] Katz, A.; Jameson, A., A comparison of various meshless schemes within a unified algorithm, (47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (2009), American Institute of Aeronautics and Astronautics)
[24] Taylor, G. I.; Green, A. E., Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 158, 895, 499-521 (1937), arXiv:http://rspa.royalsocietypublishing.org/content/158/895/499.full.pdf+html. URL http://rspa.royalsocietypublishing.org/content/158/895/499.short · JFM 63.1358.03
[25] Cole, R. H., Underwater Explosions (1948), Princeton University Press: Princeton University Press Princeton
[26] Quinlan, N.; Lastiwka, M.; Basa, M., Truncation error in mesh-free particle methods, Int. J. Numer. Methods Eng., 66, 2064-2085 (2006) · Zbl 1110.76325
[28] Giles, M. B., Non-reflecting boundary conditions for Euler equation calculations, AIAA J., 28, 12, 2050-2058 (1992)
[29] Lastiwka, M.; Basa, M.; Quinlan, N., Permeable and non-reflecting boundary conditions in SPH, Internat. J. Numer. Methods Fluids, 61, 7, 709-724 (2009) · Zbl 1421.76182
[30] Cummins, S.; Rudman, M., An SPH projection method, J. Comput. Phys., 152, 584-607 (1999) · Zbl 0954.76074
[31] Hu, X. Y.; Adams, N. A., An incompressible multi-phase SPH method, J. Comput. Phys., 227, 1, 264-278 (2007) · Zbl 1126.76045
[32] Hu, X. Y.; Adams, N. A., A constant-density approach for incompressible multi-phase SPH, J. Comput. Phys., 228, 6, 2082-2091 (2009) · Zbl 1280.76053
[33] Grenier, N.; Antuono, M.; Colagrossi, A.; Le Touzé, D.; Alessandrini, B., An hamiltonian interface SPH formulation for multi-fluid and free surface flows, J. Comput. Phys., 228, 22, 8380-8393 (2009) · Zbl 1333.76056
[36] Deshpande, S. S.; Anumolu, L.; Trujillo, M. F., Evaluating the performance of the two-phase flow solver interFoam, Comput. Sci. Discov., 5, 1, 014016+ (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.