×

Reduction formula of form factors for the integrable spin-s XXZ chains and application to correlation functions. (English) Zbl 1456.82242

Summary: For the integrable spin-s XXZ chain we express explicitly any given spin-s form factor in terms of a sum over the scalar products of the spin-1/2 fundamental operators of the algebraic Bethe ansatz. Here, they are given by the operator-valued matrix elements of the monodromy matrix of the spin-1/2 XXZ spin chain. We derive the reduction formula of higher-spin form factors by the fusion method in detail. We call an arbitrary matrix element of a local operator between two Bethe eigenstates a form factor of the operator in this paper. We thus revise the derivation of the higher-spin XXZ form factors given in a previous paper. The revised method has several interesting applications in mathematical physics. For instance, we express the spin-s XXZ correlation function of an arbitrary entry at zero temperature in terms of a sum of multiple integrals.

MSC:

82B23 Exactly solvable models; Bethe ansatz
81R12 Groups and algebras in quantum theory and relations with integrable systems
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] Korepin V E, Bogoliubov N M and Izergin A G 1993 Quantum Inverse Scattering Method and Correlation Functions (Cambridge: Cambridge University Press) · Zbl 0787.47006 · doi:10.1017/CBO9780511628832
[2] Slavnov N A 1989 Calculation of scalar products of wavefunctions and form factors in the framework of the algebraic Bethe ansatz Theor. Math. Phys.79 502 · doi:10.1007/BF01016531
[3] Jimbo M, Miki K, Miwa T and Nakayashiki A 1992 Correlation functions of the XXZ model for Δ < − 1 Phys. Lett. A 168 256 · doi:10.1016/0375-9601(92)91128-E
[4] Jimbo M and Miwa T 1995 Algebraic Analysis of Solvable Lattice Models (Providence, RI: American Mathematical Society) · Zbl 0828.17018
[5] Maillet J M and Sanchez de Santos J 2000 Drinfel’d twists and algebraic Bethe ansatz L D Faddeev’s Seminar on Mathematical Physics(Amer. Math. Soc. Transl. vol 201, Ser. 2) ed M Semenov-Tian-Shansky (Providence, RI: American Mathematical Society) pp 137-78 · Zbl 0982.17005
[6] Kitanine N, Maillet J M and Terras V 1999 Form factors of the XXZ Heisenberg spin-1/2 finite chain Nucl. Phys. B 554 647 [FS] · Zbl 0972.82014 · doi:10.1016/S0550-3213(99)00295-3
[7] Kitanine N, Maillet J M and Terras V 2000 Correlation functions of the XXZ Heisenberg spin-1/2 chain in a magnetic field Nucl. Phys. B 567 554 [FS] · Zbl 0955.82010 · doi:10.1016/S0550-3213(99)00619-7
[8] Göhmann F, Klümper A and Seel A 2004 Integral representations for correlation functions of the XXZ chain at finite temperature J. Phys. A: Math. Gen.37 7625 · Zbl 1075.82004 · doi:10.1088/0305-4470/37/31/001
[9] Kitanine N 2001 Correlation functions of the higher spin XXX chains J. Phys. A: Math. Gen.34 8151 · Zbl 1051.82504 · doi:10.1088/0305-4470/34/39/314
[10] Castro-Alvaredo O A and Maillet J M 2007 Form factors of integrable Heisenberg (higher) spin chains J. Phys. A: Math. Theor.40 7451 · Zbl 1121.82011 · doi:10.1088/1751-8113/40/27/004
[11] Göhmann F, Seel A and Suzuki J 2010 Correlation functions of the integrable isotropic spin-1 chain at finite temperature J. Stat. Mech. P11011
[12] Deguchi T and Matsui C 2009 Form factors of integrable higher-spin XXZ chains and the affine quantum-group symmetry Nucl. Phys. B 814 405 [FS] · Zbl 1194.82016 · doi:10.1016/j.nuclphysb.2009.01.002
[13] Deguchi T and Matsui C 2010 Correlation functions of the integrable higher-spin XXX and XXZ spin chains through the fusion method Nucl. Phys. B 831 359 [FS] · Zbl 1204.82008 · doi:10.1016/j.nuclphysb.2009.12.030
[14] Deguchi T and Matsui C 2011 Algebraic aspects of the correlation functions of the integrable higher-spin XXZ spin chains with arbitrary entries New trends in Quantum Integrable Systems ed B Feigin et al (Singapore: World Scientific) pp 11-33 · Zbl 1221.82024 · doi:10.1142/9789814324373_0002
[15] Deguchi T and Matsui C 2011 On the evaluation of form factors and correlation functions for the integrable spin-s XXZ chains via the fusion method arXiv:1103.4206
[16] For form factors, see also Deguchi T and Matsui C 2009 Erratum to form factors of integrable higher-spin XXZ chains and the affine quantum-group symmetry Nucl. Phys. B 814 405 · Zbl 1194.82016 · doi:10.1016/j.nuclphysb.2009.01.002
[17] Deguchi T and Matsui C 2011 Nucl. Phys. B 851 238 · Zbl 1321.82010 · doi:10.1016/j.nuclphysb.2011.05.013
[18] Deguchi T and Motegi K Quantum spin Hamiltonians and form factors of solvable models associated with in preparation
[19] Nishino A and Deguchi T 2008 An algebraic derivation of the eigenspaces associated with an Ising-like spectrum of the superintegrable chiral Potts model J. Stat. Phys.133 587 · Zbl 1161.82006 · doi:10.1007/s10955-008-9624-x
[20] Takhtajan L A 1982 The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins Phys. Lett. A 87 479 · doi:10.1016/0375-9601(82)90764-2
[21] Babujian H M 1983 Exact solution of the isotropic Heisenberg chain with arbitrary spins: thermodynamics of the model Nucl. Phys. B 215 317 [FS7] · doi:10.1016/0550-3213(83)90668-5
[22] Sogo K 1984 Ground state and low-lying excitations in the Heisenberg XXZ chain of arbitrary spin SPhys. Lett. A 104 51 · doi:10.1016/0375-9601(84)90588-7
[23] Kirillov A N and Reshetikhin N Yu 1987 Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum J. Phys. A: Math. Gen.20 1565 · doi:10.1088/0305-4470/20/6/038
[24] Alcaraz F C and Martins M J 1988 Conformal invariance and critical exponents of the Takhtajan-Babujian models J. Phys. A: Math. Gen.21 4397 · doi:10.1088/0305-4470/21/23/021
[25] Dörfel B-D 1989 Finite-size corrections for spin-S Heisenberg chains and conformal properties J. Phys. A: Math. Gen.22 L657
[26] Avdeev L V 1990 The lowest excitations in the spin-s XXX magnet and conformal invariance J. Phys. A: Math. Gen.23 L485
[27] Alcaraz F C and Martins M J 1989 Conformal invariance and the operator content of the XXZ model with arbitrary spin J. Phys. A: Math. Gen.22 1829 · Zbl 0664.17013 · doi:10.1088/0305-4470/22/11/023
[28] Frahm H, Yu N-C and Fowler M 1990 The integrable XXZ Heisenberg model with arbitrary spin: construction of the Hamiltonian, the ground-state configuration and conformal properties Nucl. Phys. B 336 396 · doi:10.1016/0550-3213(90)90435-G
[29] Frahm H and Yu N-C 1990 Finite-size effects in the XXZ Heisenberg model with arbitrary spin J. Phys. A: Math. Gen.23 2115 · doi:10.1088/0305-4470/23/11/032
[30] de Vega H J and Woynarovich F 1990 Solution of the Bethe ansatz equations with complex roots for finite size: the spin S ≥ 1 isotropic and anisotropic chains J. Phys. A: Math. Gen.23 1613 · Zbl 0724.58070 · doi:10.1088/0305-4470/23/9/022
[31] Klümper A and Batchelor M T 1990 An analytic treatment of finite-size corrections in the spin-1 antiferromagnetic XXZ chain J. Phys. A: Math. Gen.23 L189 · Zbl 0716.60125
[32] Klümper A, Batchelor M T and Pearce P A 1991 Central charge of the 6- and 19-vertex models with twisted boundary conditions J. Phys. A: Math. Gen.24 3111 · Zbl 0743.45008 · doi:10.1088/0305-4470/24/13/025
[33] Jimbo M 1985 A q-difference analogue of U(g) and the Yang-Baxter equation Lett. Math. Phys.10 63 · Zbl 0587.17004 · doi:10.1007/BF00704588
[34] Jimbo M 1986 A q-analogue of U(gl(N + 1)), Hecke algebra and the Yang-Baxter equation Lett. Math. Phys.11 247 · Zbl 0602.17005 · doi:10.1007/BF00400222
[35] Drinfel’d V G 1986 Quantum groups Proc. ICM(Berkeley) pp 798-820 · Zbl 0667.16003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.