×

Fracture analysis in 2D magneto-electro-elastic media by the boundary element method. (English) Zbl 1162.74485

Summary: An integral formulation for 2D cracked infinite anisotropic magneto-electro-elastic media is presented. Based on the method proposed by F. Garcia-Sanchez et al. [Anisotropic and piezoelectric materials fracture analysis by BEM. Comput Struct 83, 804-820 (2005)], the hypersingular kernels are analytically transformed into weakly singular and regular integrals with known analytical solution. Special quadratic discontinuous crack tip elements are employed to model the singular characteristics of the stresses, electric displacements and magnetic inductions. The extended stress intensity factors at the crack tips are calculated using the extended discontinuous displacements at crack tip elements based on one point extended displacement formulation. Some results for curved cracks in magneto-electro-elastic media are also presented.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
74R10 Brittle fracture
74F15 Electromagnetic effects in solid mechanics
74G70 Stress concentrations, singularities in solid mechanics
Full Text: DOI

References:

[1] Brebbia CA and Dominguez J (1992). Boundary elements–an introduction course. Comput Mech Publications, Southampton · Zbl 0780.73002
[2] Chue CH and Liu TJC (2005). magneto–electro–elastic antiplane analysis of a bimaterial BaTiO3–CoFe2O4 composite wedge with an interface crack. Theor Appl Fract Mech 44: 275–296 · doi:10.1016/j.tafmec.2005.09.004
[3] Ding HJ and Jiang AM (2004). A boundary integral formulation and solution for 2D problems in magneto–electro–elastic media. Comput Struct 82: 1599–1607 · doi:10.1016/j.compstruc.2004.05.006
[4] Dong CY and Pater CJ (2001). Numerical implementation of displacement discontinuity method and its application in hydraulic fracturing. Comput Methods Appl Mech Eng 191: 745–760 · Zbl 1064.74688 · doi:10.1016/S0045-7825(01)00273-0
[5] Gao CF, Hannes K and Herbert B (2003). Crack problems in magnetoelectroelastic solids. Part II: general solution of collinear cracks. Int J Eng Sci 41: 983–994 · Zbl 1211.74188 · doi:10.1016/S0020-7225(02)00324-5
[6] Gao CF, Kessler H and Balke H (2003). Crack problems in magnetoelectroelastic solids, Part I: exact solution of a crack. Int J Eng Sci 41: 969–981 · Zbl 1211.74187 · doi:10.1016/S0020-7225(02)00323-3
[7] Gao CF, Tong P and Zhang TY (2003). Interfacial crack problems in magneto-electroelastic solids. Int J Eng Sci 41: 2105–2121 · doi:10.1016/S0020-7225(03)00206-4
[8] Garcia-Sanchez F, Rojas-Diaz R, Saez A and Zhang Ch (2007). Fracture of magnetoelectroelastic composite materials using boundary element thod (BEM). Theor Appl Fracture Mech 47: 192–204 · doi:10.1016/j.tafmec.2007.01.008
[9] Garcia-Sanchez F, Saez A, Rojas-Diaz R, Zhang Ch (2006) Dual BEM for fracture analysis of magnetoelectroelastic solids. In: Gatmiri B, Sellier A, Aliabadi MH (eds) Proceedings of the 7th international conference on boundary element techniques. EC Ltd., pp 159–163
[10] Garcia-Sanchez F, Saez A and Dominguez J (2005). Anisotropic and piezoelectric materials fracture analysis by BEM. Comput Struct 83: 804–820 · doi:10.1016/j.compstruc.2004.09.010
[11] Hu KQ and Li GQ (2005). Electro-magneto-elastic analysis of a piezoelectromagnetic strip with a finite crack under longitudinal shear. Mech Mat 37: 925–934 · doi:10.1016/j.mechmat.2004.03.006
[12] Jiang X and Pan E (2004). Exact solution for 2D polygonal inclusion problem in anisotropic magnetoelectroelastic full-, half- and bimaterial-planes. Int J Solids Struct 41: 4361–4382 · Zbl 1079.74541 · doi:10.1016/j.ijsolstr.2004.03.017
[13] Liang W, Fang D, Shen Y and Soh AK (2002). Nonlinear magnetoelastic coupling effects in a soft ferromagnetic material with a crack. Int J Solids Struct 39: 3997–4011 · Zbl 1040.74017 · doi:10.1016/S0020-7683(02)00266-4
[14] Lin CB and Lin HM (2002). The magnetoelastic problem of cracks in bonded dissimilar materials. Int J Solids Struct 39: 2807–2826 · Zbl 1087.74613 · doi:10.1016/S0020-7683(02)00153-1
[15] Liu JX, Liu XL and Zhao YB (2001). Green’s functions for anisotropic magnetoelectroelastic solids with an elliptical cavity or a crack. Int J Eng Sci 39: 1405–1418 · Zbl 1210.74043 · doi:10.1016/S0020-7225(01)00049-0
[16] Liu Y and Fan H (2001). On the conventional boundary integral formulation for piezoelectric solids with defects or of thin shapes. Eng Anal Boundary Elements 25: 77–91 · Zbl 1114.74497 · doi:10.1016/S0955-7997(01)00004-2
[17] Pan E (2002). Three-dimensional Green’s functions in anisotropic magneto–electro–elastic bimaterials. J Appl Math Phys (ZAMP) 53: 815–838 · Zbl 1031.74024 · doi:10.1007/s00033-002-8184-1
[18] Pan E (2001). Exact solution for simply supported and multilayered magneto–electro–elastic plates. ASME J Appl Mech 68: 608–618 · Zbl 1110.74612 · doi:10.1115/1.1380385
[19] Pan E (1999). A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids. Eng Anal Boundary Elem 23: 67–76 · Zbl 1062.74639 · doi:10.1016/S0955-7997(98)00062-9
[20] Shindo Y, Horiguchi K and Shindo T (1999). Magneto-elastic analysis of a soft ferromagnetic plate with a through crack under bending. Int J Eng Sci 37: 687–702 · doi:10.1016/S0020-7225(98)00095-0
[21] Song ZF and Sih GC (2003). Crack initiation behavior in a magnetoelectroelastic composite under in-plane deformation. Theor Appl Fract Mech 39: 189–207 · doi:10.1016/S0167-8442(03)00002-8
[22] Suo Z, Kuo CM, Barnett DM and Willis JR (1992). Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40: 739–765 · Zbl 0825.73584 · doi:10.1016/0022-5096(92)90002-J
[23] Tian WY and Gabbert U (2005). Macrocrack–microcrack interaction problem in magnetoelectroelastic solids. Mech Mat 37: 565–592 · doi:10.1016/j.mechmat.2004.04.008
[24] Tian WY and Rajapakse RKND (2005). Fracture analysis of magnetoelectroelastic solids by path independent integrals. Int J Fracture 131: 311–335 · Zbl 1196.74217 · doi:10.1007/s10704-004-5103-9
[25] Tian WY and Gabbert U (2004). Multiple crack interaction problem in magnetoelectroelastic solids. Eur J Mech Solids 23: 599–614 · Zbl 1062.74044 · doi:10.1016/j.euromechsol.2004.02.002
[26] Wang BL and Mai YW (2004). Fracture of piezoelectromagnetic materials. Mech Rev Commun 31: 65–73 · Zbl 1045.74586 · doi:10.1016/j.mechrescom.2003.08.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.