×

On the Kohnen plus space for Hilbert modular forms of half-integral weight. I. (English) Zbl 1368.11044

Summary: In this paper, we construct a generalization of the Kohnen plus space for Hilbert modular forms of half-integral weight. The Kohnen plus space can be characterized by the eigenspace of a certain Hecke operator. It can be also characterized by the behavior of the Fourier coefficients. For example, in the parallel weight case, a modular form of weight \(\kappa + (1/ 2)\) with \(\xi\text{th} \) Fourier coefficient \(c(\xi)\) belongs to the Kohnen plus space if and only if \(c(\xi )= 0\) unless \((-1)^{\kappa }\xi\) is congruent to a square modulo \(4\). The Kohnen subspace is isomorphic to a certain space of Jacobi forms. We also prove a generalization of the Kohnen-Zagier formula.

MSC:

11F37 Forms of half-integer weight; nonholomorphic modular forms
11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces
11F30 Fourier coefficients of automorphic forms
11F50 Jacobi forms
11F70 Representation-theoretic methods; automorphic representations over local and global fields
Full Text: DOI

References:

[2] doi:10.2307/1970831 · Zbl 0266.10022 · doi:10.2307/1970831
[3] doi:10.1007/BF02391012 · Zbl 0203.03305 · doi:10.1007/BF02391012
[7] doi:10.2140/pjm.2010.247.435 · Zbl 1259.11053 · doi:10.2140/pjm.2010.247.435
[9] doi:10.2748/tmj/1347369368 · Zbl 1284.11086 · doi:10.2748/tmj/1347369368
[10] doi:10.1007/978-3-642-61553-5 · doi:10.1007/978-3-642-61553-5
[11] doi:10.1007/BF01389166 · Zbl 0468.10015 · doi:10.1007/BF01389166
[12] doi:10.2307/2118638 · Zbl 0847.11026 · doi:10.2307/2118638
[13] doi:10.1007/BF01420529 · Zbl 0416.10023 · doi:10.1007/BF01420529
[14] doi:10.1007/s10240-012-0040-z · Zbl 1329.11053 · doi:10.1007/s10240-012-0040-z
[16] doi:10.1007/978-1-4684-9162-3 · doi:10.1007/978-1-4684-9162-3
[17] doi:10.2307/3062143 · Zbl 0998.11023 · doi:10.2307/3062143
[19] doi:10.1215/S0012-7094-91-06316-7 · Zbl 0758.22009 · doi:10.1215/S0012-7094-91-06316-7
[20] doi:10.1007/s00222-005-0454-z · Zbl 1188.11020 · doi:10.1007/s00222-005-0454-z
[21] doi:10.2307/1971508 · Zbl 0699.10039 · doi:10.2307/1971508
[22] doi:10.1007/BF02942566 · Zbl 0958.11038 · doi:10.1007/BF02942566
[24] doi:10.1007/978-3-8348-0352-8_2 · doi:10.1007/978-3-8348-0352-8_2
[26] doi:10.1007/s00039-007-0601-3 · Zbl 1191.11012 · doi:10.1007/s00039-007-0601-3
[29] doi:10.1090/pspum/033.2/546607 · doi:10.1090/pspum/033.2/546607
[30] doi:10.1215/S0012-7094-93-07121-9 · doi:10.1215/S0012-7094-93-07121-9
[31] doi:10.1215/S0012-7094-87-05538-4 · Zbl 0636.10024 · doi:10.1215/S0012-7094-87-05538-4
[32] doi:10.1215/S0012-7094-85-05216-0 · Zbl 0577.10025 · doi:10.1215/S0012-7094-85-05216-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.