×

Rigorous analysis for efficient statistically accurate algorithms for solving Fokker-Planck equations in large dimensions. (English) Zbl 1410.35244

The purpose of this article is to solve the Fokker-Planck equations associated with high-dimensional nonlinear stochastic systems with conditional Gaussian structures in large dimensions numerically. First, the efficient statistically accurate algoritms for solving these PDEs are reviewed. The state variabes are decomposed into two groups, the conditional Gaussian system becomes a Gaussian process.
Let MISE denote the mean integrated square error. The first theorem states that the two parts of MISE for the hybrid method are bounded. The second theorem states that under certain assumptions, the joint density converges geometrically to an ergodic measure with a rate \(>0\). The third theorem states certain properties for the stochastic flow with energy conserving quadratic nonlinearity. Numerical examples are illustrated by a three-dimensional coupled nonlinear system and beautiful pictures. The proofs use Taylor expansion, variance-bias decomposition, block diagonal covariance, Lyapunov function, Gronvall and Cauchy-Schwarz inequalities.

MSC:

35Q84 Fokker-Planck equations
76F55 Statistical turbulence modeling
65C05 Monte Carlo methods
37C75 Stability theory for smooth dynamical systems
93B05 Controllability
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
35R60 PDEs with randomness, stochastic partial differential equations

References:

[1] D. Bakry, P. Cattiaux, and A. Guillin, {\it Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré}, J. Funct. Anal., 254 (2008), pp. 727-759. · Zbl 1146.60058
[2] A. N. Bishop and P. Del Moral, {\it On the Stability of Kalman-Bucy Diffusion Processes}, preprint, , 2016.
[3] R. C. Booton, {\it Nonlinear control systems with random inputs}, IRE Trans. Circuit Theory, 1 (1954), pp. 9-18.
[4] Z. I. Botev, J. F. Grotowski, and D. P. Kroese, {\it Kernel density estimation via diffusion}, Ann. Statist., 38 (2010), pp. 2916-2957. · Zbl 1200.62029
[5] M. Branicki, N. Chen, and A. J. Majda, {\it Non-Gaussian test models for prediction and state estimation with model errors}, in Partial Differential Equations: Theory, Control and Approximation, Springer, New York, 2014, pp. 99-138. · Zbl 1334.60058
[6] M. Branicki and A. J. Majda, {\it Quantifying uncertainty for predictions with model error in non-Gaussian systems with intermittency}, Nonlinearity, 25 (2012), pp. 2543-2578. · Zbl 1259.86004
[7] M. Branicki and A. J. Majda, {\it Dynamic stochastic superresolution of sparsely observed turbulent systems}, J. Comput. Phys., 241 (2013), pp. 333-363. · Zbl 1349.76761
[8] J. Chang and G. Cooper, {\it A practical difference scheme for Fokker-Planck equations}, J. Comput. Phys., 6 (1970), pp. 1-16. · Zbl 0221.65153
[9] N. Chen, D. Giannakis, R. Herbei, and A. J. Majda, {\it An MCMC algorithm for parameter estimation in signals with hidden intermittent instability}, SIAM/ASA J. Uncertain. Quantif., 2 (2014), pp. 647-669, . · Zbl 1350.60071
[10] N. Chen and A. J. Majda, {\it Predicting the cloud patterns for the boreal summer intraseasonal oscillation through a low-order stochastic model}, Math. Climate Weather Forecasting, 1 (2015), pp. 1-20. · Zbl 1364.86015
[11] N. Chen and A. J. Majda, {\it Predicting the real-time multivariate Madden-Julian oscillation index through a low-order nonlinear stochastic model}, Monthly Weather Rev., 143 (2015), pp. 2148-2169.
[12] N. Chen and A. J. Majda, {\it Filtering nonlinear turbulent dynamical systems through conditional Gaussian statistics}, Monthly Weather Rev., 144 (2016), pp. 4885-4917.
[13] N. Chen and A. J. Majda, {\it Filtering the stochastic skeleton model for the Madden-Julian oscillation}, Monthly Weather Rev., 144 (2016), pp. 501-527.
[14] N. Chen and A. J. Majda, {\it Model error in filtering random compressible flows utilizing noisy Lagrangian tracers}, Monthly Weather Rev., 144 (2016), pp. 4037-4061.
[15] N. Chen and A. J. Majda, {\it Beating the curse of dimension with accurate statistics for the Fokker-Planck equation in complex turbulent systems}, Proc. Natl. Acad. Sci. USA, 114 (2017), pp. 12864-12869. · Zbl 1404.35444
[16] N. Chen and A. J. Majda, {\it Efficient statistically accurate algorithms for the Fokker-Planck equation in large dimensions}, J. Comput. Phys., 354 (2018), pp. 242-268. · Zbl 1380.60055
[17] N. Chen, A. J. Majda, and D. Giannakis, {\it Predicting the cloud patterns of the Madden-Julian oscillation through a low-order nonlinear stochastic model}, Geophys. Res. Lett., 41 (2014), pp. 5612-5619.
[18] N. Chen, A. J. Majda, and X. T. Tong, {\it Information barriers for noisy Lagrangian tracers in filtering random incompressible flows}, Nonlinearity, 27 (2014), pp. 2133-2163. · Zbl 1320.60102
[19] N. Chen, A. J. Majda, and X. T. Tong, {\it Noisy Lagrangian tracers for filtering random rotating compressible flows}, J. Nonlinear Sci., 25 (2015), pp. 451-488. · Zbl 1329.76128
[20] C. K. Chui and G. Chen, {\it Kalman Filtering with Real-Time Applications}, 3rd ed., Springer, Berlin, 1999. · Zbl 0908.93066
[21] W. Cousins and T. P. Sapsis, {\it Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave model}, Phys. D, 280 (2014), pp. 48-58. · Zbl 1349.35050
[22] W. Cousins and T. P. Sapsis, {\it Reduced-order precursors of rare events in unidirectional nonlinear water waves}, J. Fluid Mech., 790 (2016), pp. 368-388. · Zbl 1382.76030
[23] D. Crisan and B. Rozovskii, {\it The Oxford Handbook of Nonlinear Filtering}, Oxford University Press, Oxford, UK, 2011. · Zbl 1210.60005
[24] F. Daum and J. Huang, {\it Curse of dimensionality and particle filters}, in Proceedings of the IEEE Aerospace Conference, Vol. 4, IEEE, Washington, DC, 2003, pp. 1979-1993.
[25] G.-K. Er, {\it Methodology for the solutions of some reduced Fokker-Planck equations in high dimensions}, Ann. Phys., 523 (2011), pp. 247-258. · Zbl 1214.82076
[26] G.-K. Er and V. P. Iu, {\it State-space-split method for some generalized Fokker-Planck-Kolmogorov equations in high dimensions}, Phys. Rev. E, 85 (2012), 067701.
[27] J. H. Friedman, {\it On bias, variance, 0/1-loss, and the curse-of-dimensionality}, Data Mining Knowledge Discovery, 1 (1997), pp. 55-77.
[28] C. W. Gardiner, {\it Stochastic Methods}, Springer-Verlag, Berlin, 1985.
[29] B. Gershgorin, J. Harlim, and A. J. Majda, {\it Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation}, J. Comput. Phys., 229 (2010), pp. 32-57. · Zbl 1178.93134
[30] B. Gershgorin, J. Harlim, and A. J. Majda, {\it Test models for improving filtering with model errors through stochastic parameter estimation}, J. Comput. Phys., 229 (2010), pp. 1-31. · Zbl 1178.93133
[31] M. Ghil, P. Yiou, S. Hallegatte, B. Malamud, P. Naveau, A. Soloviev, P. Friederichs, V. Keilis-Borok, D. Kondrashov, V. Kossobokov, O. Mestre, C. Nicolis, H. W. Rust, P. Shebalin, M. Vrac, A. Witt, and I. Zaliapin, {\it Extreme events: Dynamics, statistics and prediction}, Nonlinear Processes Geophys., 18 (2011), pp. 295-350.
[32] A. Greco, W. Matthaeus, S. Servidio, P. Chuychai, and P. Dmitruk, {\it Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence}, Astrophys. J. Lett., 691 (2009), L111.
[33] J. Harlim, A. Mahdi, and A. J. Majda, {\it An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models}, J. Comput. Phys., 257 (2014), pp. 782-812. · Zbl 1349.62593
[34] H.-L. Huang and P. Antonelli, {\it Application of principal component analysis to high-resolution infrared measurement compression and retrieval}, J. Appl. Meteorol., 40 (2001), pp. 365-388.
[35] M. C. Jones, J. S. Marron, and S. J. Sheather, {\it A brief survey of bandwidth selection for density estimation}, J. Amer. Statist. Assoc., 91 (1996), pp. 401-407. · Zbl 0873.62040
[36] S. R. Keating, A. J. Majda, and K. S. Smith, {\it New methods for estimating ocean eddy heat transport using satellite altimetry}, Monthly Weather Rev., 140 (2012), pp. 1703-1722.
[37] P. Kumar and S. Narayanan, {\it Solution of Fokker-Planck equation by finite element and finite difference methods for nonlinear systems}, Sadhana, 31 (2006), pp. 445-461. · Zbl 1154.65361
[38] W. Lee and A. Stuart, {\it Derivation and analysis of simplified filters}, Commun. Math. Sci., 15 (2017), pp. 413-450. · Zbl 1365.60042
[39] Y. Lee and A. J. Majda, {\it Multiscale data assimilation and prediction using clustered particle filters}, J. Comput. Phys., submitted.
[40] B. Lindner, J. Garc\i a-Ojalvo, A. Neiman, and L. Schimansky-Geier, {\it Effects of noise in excitable systems}, Phys. Rep., 392 (2004), pp. 321-424.
[41] R. S. Liptser and A. N. Shiryaev, {\it Statistics of Random Processes II. Applications}, 2nd ed., Springer, Berlin, 2001. · Zbl 1008.62073
[42] E. N. Lorenz, {\it Deterministic nonperiodic flow}, J. Atmospheric Sci., 20 (1963), pp. 130-141. · Zbl 1417.37129
[43] A. Majda, {\it Introduction to Turbulent Dynamical Systems in Complex Systems}, Frontiers Appl. Dynam. Syst. Rev. Tutorials 5, Springer, Berlin, 2016. · Zbl 1377.37003
[44] A. Majda, R. V. Abramov, and M. J. Grote, {\it Information Theory and Stochastics for Multiscale Nonlinear Systems}, CRM Monogr. Ser. 25, AMS, Providence, RI, 2005. · Zbl 1082.60002
[45] A. Majda, I. Timofeyev, and E. Vanden-Eijnden, {\it A priori tests of a stochastic mode reduction strategy}, Phys. D, 170 (2002), pp. 206-252. · Zbl 1007.60064
[46] A. Majda, I. Timofeyev, and E. Vanden-Eijnden, {\it Stochastic models for selected slow variables in large deterministic systems}, Nonlinearity, 19 (2006), pp. 769-794. · Zbl 1101.60048
[47] A. Majda and X. Wang, {\it Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows}, Cambridge University Press, Cambridge, UK, 2006. · Zbl 1141.86001
[48] A. J. Majda, {\it Statistical energy conservation principle for inhomogeneous turbulent dynamical systems}, Proc. Natl. Acad. Sci. USA, 112 (2015), pp. 8937-8941.
[49] A. J. Majda and M. Branicki, {\it Lessons in uncertainty quantification for turbulent dynamical systems}, Discrete Contin. Dyn. Syst., 32 (2012), pp. 3133-3221. · Zbl 1264.94076
[50] A. J. Majda, C. Franzke, and D. Crommelin, {\it Normal forms for reduced stochastic climate models}, Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 3649-3653. · Zbl 1202.86011
[51] A. J. Majda, C. Franzke, and B. Khouider, {\it An applied mathematics perspective on stochastic modelling for climate}, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), pp. 2429-2455. · Zbl 1153.86315
[52] A. J. Majda and I. Grooms, {\it New perspectives on superparameterization for geophysical turbulence}, J. Comput. Phys., 271 (2014), pp. 60-77. · Zbl 1349.86035
[53] A. J. Majda and J. Harlim, {\it Filtering Complex Turbulent Systems}, Cambridge University Press, Cambridge, UK, 2012. · Zbl 1250.93002
[54] A. J. Majda and J. Harlim, {\it Physics constrained nonlinear regression models for time series}, Nonlinearity, 26 (2013), pp. 201-217. · Zbl 1262.93024
[55] A. J. Majda and Y. Lee, {\it Conceptual dynamical models for turbulence}, Proc. Natl. Acad. Sci. USA, 111 (2014), pp. 6548-6553. · Zbl 1355.76025
[56] A. J. Majda, D. Qi, and T. P. Sapsis, {\it Blended particle filters for large-dimensional chaotic dynamical systems}, Proc. Natl. Acad. Sci. USA, 111 (2014), pp. 7511-7516. · Zbl 1359.62392
[57] A. J. Majda, I. Timofeyev, and E. V. Eijnden, {\it Models for stochastic climate prediction}, Proc. Natl. Acad. Sci. USA, 96 (1999), pp. 14687-14691. · Zbl 0966.86003
[58] A. J. Majda, I. Timofeyev, and E. Vanden Eijnden, {\it A mathematical framework for stochastic climate models}, Comm. Pure Appl. Math., 54 (2001), pp. 891-974. · Zbl 1017.86001
[59] A. J. Majda and X. T. Tong, {\it Ergodicity of truncated stochastic Navier-Stokes with deterministic forcing and dispersion}, J. Nonlinear Sci., 26 (2016), pp. 1483-1506. · Zbl 1349.76099
[60] A. J. Majda and Y. Yuan, {\it Fundamental limitations of ad hoc linear and quadratic multi-level regression models for physical systems}, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), pp. 1333-1363. · Zbl 1263.62100
[61] J. C. Mattingly, A. M. Stuart, and D. J. Higham, {\it Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise}, Stochastic Process. Appl., 101 (2002), pp. 185-232. · Zbl 1075.60072
[62] S. P. Meyn and R. L. Tweedie, {\it Markov Chains and Stochastic Stability}, Springer, London, 2012. · Zbl 0925.60001
[63] M. A. Mohamad and T. P. Sapsis, {\it Probabilistic response and rare events in Mathieu’s equation under correlated parametric excitation}, Ocean Engrg., 120 (2016), pp. 289-297.
[64] J. D. Neelin, B. R. Lintner, B. Tian, Q. Li, L. Zhang, P. K. Patra, M. T. Chahine, and S. N. Stechmann, {\it Long tails in deep columns of natural and anthropogenic tropospheric tracers}, Geophys. Res. Lett., 37 (2010), L05804.
[65] T. Palmer and J. Räisänen, {\it Quantifying the risk of extreme seasonal precipitation events in a changing climate}, Nature, 415 (2002), pp. 512-514.
[66] L. Pichler, A. Masud, and L. A. Bergman, {\it Numerical solution of the Fokker-Planck equation by finite difference and finite element methods: A comparative study}, in Computational Methods in Stochastic Dynamics, Springer, New York, 2013, pp. 69-85. · Zbl 1304.65222
[67] H. Risken, {\it The Fokker-Planck Equation. Methods of Solution and Applications}, Springer Ser. Synergetics 18, Springer, New York, 1989. · Zbl 0665.60084
[68] C. P. Robert, {\it Monte Carlo Methods}, Wiley Online Library, 2004.
[69] R. Salmon, {\it Lectures on geophysical fluid dynamics}, Oxford University Press, Oxford, UK, 1998.
[70] B. W. Silverman, {\it Using kernel density estimates to investigate multimodality}, J. Roy. Statist. Soc. Ser. B, 43 (1981), pp. 97-99.
[71] L. Socha, {\it Linearization Methods for Stochastic Dynamic Systems}, Lecture Notes in Phys. 730, Springer, Berlin, 2008. · Zbl 1145.60034
[72] B. Spencer and L. Bergman, {\it On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems}, Nonlinear Dynamics, 4 (1993), pp. 357-372.
[73] Y. Sun and M. Kumar, {\it Numerical solution of high dimensional stationary Fokker-Planck equations via tensor decomposition and Chebyshev spectral differentiation}, Comput. Math. Appl., 67 (2014), pp. 1960-1977. · Zbl 1367.65177
[74] A. F. Thompson and W. R. Young, {\it Scaling baroclinic eddy fluxes: Vortices and energy balance}, J. Phys. Oceanogr., 36 (2006), pp. 720-738.
[75] S. Thual, A. J. Majda, N. Chen, and S. N. Stechmann, {\it Simple stochastic model for El Nin͂o with westerly wind bursts}, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. 10245-10250. · Zbl 1355.86005
[76] G. K. Vallis, {\it Atmospheric and Oceanic Fluid Dynamics}, Cambridge University Press, Cambridge, UK, 2017. · Zbl 1374.86002
[77] U. von Wagner and W. V. Wedig, {\it On the calculation of stationary solutions of multi-dimensional Fokker-Planck equations by orthogonal functions}, Nonlinear Dynamics, 21 (2000), pp. 289-306. · Zbl 0985.70020
[78] M. Wand, {\it Error analysis for general multivariate kernel estimators}, J. Nonparametric Statist., 2 (1992), pp. 1-15. · Zbl 1360.62141
[79] M. P. Wand and M. C. Jones, {\it Multivariate plug-in bandwidth selection}, Comput. Statist., 9 (1994), pp. 97-116. · Zbl 0937.62055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.