×

Analysis of the one-dimensional Euler-Lagrange equation of continuum mechanics with a Lagrangian of a special form. (English) Zbl 1481.76008

Summary: The equations describing the flow of a one-dimensional continuum in Lagrangian coordinates are studied in this paper by the group analysis method. They are reduced to a single Euler-Lagrange equation which contains two undetermined functions (arbitrary elements). Particular choices of these arbitrary elements correspond to different forms of the shallow water equations, including those with both, a varying bottom and advective impulse transfer effect, and also some other motions of a continuum. A complete group classification of the equations with respect to the arbitrary elements is performed. One advantage of the Lagrangian coordinates consists of the presence of a Lagrangian, so that the equations studied become Euler-Lagrange equations. This allows us to apply Noether’s theorem for constructing conservation laws in Lagrangian coordinates. Not every conservation law in Lagrangian coordinates has a counterpart in Eulerian coordinates, whereas the converse is true. Using Noether’s theorem, conservation laws which can be obtained by the point symmetries are presented, and their analogs in Eulerian coordinates are given, where they exist.

MSC:

76A02 Foundations of fluid mechanics
37J51 Action-minimizing orbits and measures for finite-dimensional Hamiltonian and Lagrangian systems; variational principles; degree-theoretic methods
70H03 Lagrange’s equations

References:

[1] In Russian. · Zbl 0931.74003
[2] Gavrilyuk, S. L.; Teshukov, V. M., Generalized vorticity for bubbly liquid and dispersive shallow water equations, Cont. Mech. Thermodyn., 13, 365-382 (2001) · Zbl 1097.76597
[3] Gavrilyuk, S. L.; Shugrin, S. M., Media with equations of state that depend on derivatives, J. Appl. Mech. Tech. Phys., 37, 2, 177-189 (1996) · Zbl 1031.76501
[4] Kaptsov, E. I.; Meleshko, S. V., Conservation laws of the two-dimensional gas dynamics equations, Int. J. Non-Linear Mech., 112, 126-132 (2019)
[5] Dorodnitsyn, V. A.; Kozlov, R.; Meleshko, S. V., Analysis of 1D gas dynamics equations of a polytropic gas in Lagrangian coordinates: symmetry classification, conservation laws, difference schemes, Commun. Nonlinear Sci. Numer. Simul., 74, 201-218 (2019) · Zbl 1464.82019
[6] Whitham, G. B., Linear and Nonlinear Waves (1974), Wiley: Wiley New York · Zbl 0373.76001
[7] Matsuno, Y., Hamiltonian formulation of the extended Green-Naghdi equations, Phycs. D, 301-302, 1-7 (2015) · Zbl 1364.76031
[8] Karelsky, K. V.; Petrosyan, A. S., Particular solutions and Riemann problem for modified shallow water equations, Fluid Dyn. Res., 38, 5, 339-358 (2006) · Zbl 1135.76009
[9] Proceedings of the IUTAM Symposium held in Moscow, 25-30, August, 2006. · Zbl 1207.76017
[10] Serre, F., Contribution à l’étude des écoulements permanents et variables dans les canaux, Houille Blanche, 3, 374-388 (1953)
[11] Su, C. H.; Gardner, C. S., Korteweg-de Vries equation and generalizations. III. derivation of the Korteweg-de Vries equation and Burgers equation, J. Math. Phys., 10, 3, 10-23 (1969) · Zbl 0283.35020
[12] Green, A. E.; Naghdi, P. M., A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78, 237-246 (1976) · Zbl 0351.76014
[13] Popov, Y. P.; Samarskii, A. A., Completely conservative difference schemes, USSR Comput. Math. Math. Phys., 9, 4, 296-305 (1969) · Zbl 0229.65064
[14] Popov, Y. P.; Samarskii, A. A., Completely conservative difference schemes for magnetohydrodynamic equations, USSR Comput. Math. Math. Phys., 10, 4, 233-243 (1970) · Zbl 0285.76043
[15] In Russian.
[16] Ibragimov, N. H., A new conservation theorem, J. Math. Anal. Appl., 333, 311-328 (2007) · Zbl 1160.35008
[17] Bluman, G. W.; Cheviakov, A. F.; Anco, S. C., Applications of symmetry methods to partial differential equations, Applied Mathematical Sciences, 168 (2010), Springer: Springer New York · Zbl 1223.35001
[18] 1971, 186-207. arXiv:physics/0503066 [physics.hist-ph]. · Zbl 0292.49008
[19] Webb, G. M.; Zank, G. P., Fluid relabelling symmetries, lie point symmetries and the Lagrangian map in magnetohydrodynamics and gas dynamics, J. Phys. A Math. Theor., 40, 545-579 (2007) · Zbl 1195.76441
[20] Webb, G., Magnetohydrodynamics and fluid dynamics: action principles and conservation laws, Lecture Notes in Physics, 946 (2018), Springer: Springer Heidelberg · Zbl 1397.76001
[21] Siriwat, P.; Kaewmanee, C.; Meleshko, S. V., Symmetries of the hyperbolic shallow water equations and the Green-Naghdi model in Lagrangian coordinates, Int. J. Non-Linear Mech., 86, 185-195 (2016)
[22] Voraka, P.; Kaewmanee, C.; Meleshko, S. V., Symmetries of the shallow water equations in the Boussinesq approximation, Commun. Nonlinear Sci. Numer. Simul., 67, 1-12 (2019) · Zbl 1456.76030
[23] In Russian.
[24] Chirkunov, Y. A.; Pikmullina, E. O., Symmetry properties and solutions of shallow water equations, Univ. J. Appl. Math., 2, 1, 10-23 (2014)
[25] Szatmari, S.; Bihlo, A., Symmetry analysis of a system of modified shallow-water equations, Commun. Nonlinear Sci. Numer. Simul., 19, 530-537 (2014) · Zbl 1470.76022
[26] In Russian.
[27] Published by Academic Press, New York, 1982. · Zbl 0485.58002
[28] N.H. Ibragimov, N.H. Ibragimov (Eds.), CRC Handbook of Lie Group Analysis of Differential Equations, volume 1, CRC Press, Boca Raton, 1994. · Zbl 0864.35001
[29] Novosibirsk.
[30] Andreev, V. K.; Kaptsov, O. V.; Pukhnachov, V. V.; Rodionov, A. A., Applications of Group-Theoretic Methods in Hydrodynamics (1998), Kluwer: Kluwer Dordrecht · Zbl 0912.35001
[31] Journal of Soviet Mathematics (in Russian). · Zbl 0760.35002
[32] Webb, G. M.; Zank, G. P., Scaling symmetries, conservation laws and action principles in one-dimensional gas dynamics, J. Phys. A Math. Theor., 42, 47, 475205 (2009) · Zbl 1183.82061
[33] Sjöberg, A.; Mahomed, F. M., Non-local symmetries and conservation laws for one-dimensional gas dynamics equations, Appl. Math. Comput., 150, 379-397 (2004) · Zbl 1102.76059
[34] Sekhar, T. R.; Sharma, V. D., Similarity analysis of modified shallow water equations and evolution of weak waves, Commun. Nonlinear Sci. Numer. Simul., 17, 630-636 (2012) · Zbl 1245.35097
[35] N.H. Ibragimov (Ed.), CRC Handbook of Lie Group Analysis of Differential Equations, 3, CRC Press, Boca Raton, 1996. · Zbl 0864.35003
[36] Zhdanov, R.; Lahno, V.; Magda, O., Group classification and exact solutions of nonlinear wave equations, Acta Applicandae Mathematicae, 91, 253-313 (2006) · Zbl 1113.35132
[37] Gandarias, M. L.; Torrisi, M.; Valenti, A., Symmetry classification and optimal systems of a non-linear wave equation, Int. J. Non-Linear Mech., 39, 04, 389-398 (2004) · Zbl 1348.35140
[38] Ibragimov, N. H.; Torrisi, M.; Valenti, A., Preliminary group classification of equations \(v_{t t} = f ( x , v_x ) v_{x x} + g ( x , v_x )\), J. Math. Phys., 32, 2988-2995 (1991) · Zbl 0737.35099
[39] Bihlo, A.; Cardoso-Bihlo, E. D.S.; Popovych, R. O., Complete group classification of a class of nonlinear wave equations, J. Math. Phys., 53, 12 (2012) · Zbl 1282.35020
[40] In Ukrainian. · Zbl 1003.35016
[41] Meleshko, S. V., Methods for constructing exact solutions of partial differential equations, Mathematical and Analytical Techniques with Applications to Engineering (2005), Springer: Springer New York · Zbl 1081.35001
[42] Dordrecht, 1985. · Zbl 0558.53040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.